IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v205y2023icp929-944.html
   My bibliography  Save this article

Process synthesis and 4E evaluation of hybrid reactive distillation processes for the ethanol and tert-butanol recovery from wastewater

Author

Listed:
  • Geng, Xueli
  • Yan, Peng
  • Zhou, Hao
  • Li, Hong
  • Gao, Xin

Abstract

Aiming at achieving the high-purity recovery of ethanol (EtOH) and tert-butanol (TBA) from industrial waste with low carbon emission, the processes intensified by hybrid reactive distillation combined with pressure-swing distillation (PSD) and extractive distillation (ED) are proposed in this work. The optimum procedure of the sequential iterative method is applied to select an optimal pressure for these hybrid reactive distillation processes. From the economic and environmental impact perspective, the results indicated that the reactive-extractive-/pressure-swing hybrid distillation has significant economic and environmental advantages. The REPDC-REPC (reactive-extractive-/pressure-swing hybrid distillation) process is the most potential and competitive, saving 56.47% TAC and reducing 69.23% CO2 emissions, and has 67.51% thermodynamic efficiency, minor exergy destruction, and most enormous total exergy efficiency. Meanwhile, the work also demonstrates that the operating pressure of the column plays an important role, which positively affects the energy saving of the recovery process.

Suggested Citation

  • Geng, Xueli & Yan, Peng & Zhou, Hao & Li, Hong & Gao, Xin, 2023. "Process synthesis and 4E evaluation of hybrid reactive distillation processes for the ethanol and tert-butanol recovery from wastewater," Renewable Energy, Elsevier, vol. 205(C), pages 929-944.
  • Handle: RePEc:eee:renene:v:205:y:2023:i:c:p:929-944
    DOI: 10.1016/j.renene.2023.01.107
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123001283
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.01.107?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhao, Yongteng & Ma, Kang & Bai, Wenting & Du, Deqing & Zhu, Zhaoyou & Wang, Yinglong & Gao, Jun, 2018. "Energy-saving thermally coupled ternary extractive distillation process by combining with mixed entrainer for separating ternary mixture containing bioethanol," Energy, Elsevier, vol. 148(C), pages 296-308.
    2. Gharagheizi, Farhad & Ilani-Kashkouli, Poorandokht & Mohammadi, Amir H. & Ramjugernath, Deresh, 2014. "A group contribution method for determination of the standard molar chemical exergy of organic compounds," Energy, Elsevier, vol. 70(C), pages 288-297.
    3. Petchsoongsakul, Nattawat & Ngaosuwan, Kanokwan & Kiatkittipong, Worapon & Wongsawaeng, Doonyapong & Assabumrungrat, Suttichai, 2020. "Different water removal methods for facilitating biodiesel production from low-cost waste cooking oil containing high water content in hybridized reactive distillation," Renewable Energy, Elsevier, vol. 162(C), pages 1906-1918.
    4. Bumbac, Gheorghe & Banu, Ionut, 2022. "Modeling and simulation process for solketal synthesis from glycerol and acetone by catalytic distillation in a modified structure of a divided wall column," Renewable Energy, Elsevier, vol. 183(C), pages 662-675.
    5. Wang, Naigen & Ye, Qing & Chen, Lijuan & Zhang, Haoxiang & Zhong, Jing, 2021. "Improving the economy and energy efficiency of separating water/acetonitrile/isopropanol mixture via triple-column pressure-swing distillation with heat-pump technology," Energy, Elsevier, vol. 215(PA).
    6. Muhammad, Hafiz Ali & Lee, Beomjoon & Cho, Junhyun & Rehman, Zabdur & Choi, Bongsu & Cho, Jongjae & Roh, Chulwoo & Lee, Gilbong & Imran, Muhammad & Baik, Young-Jin, 2021. "Application of advanced exergy analysis for optimizing the design of carbon dioxide pressurization system," Energy, Elsevier, vol. 228(C).
    7. Liu, Gen & Si, Zhihao & Chen, Bo & Chen, Changjing & Cheng, Shikun & Ouyang, Jinbo & Chen, Huidong & Cai, Di & Qin, Peiyong & Wang, Jianhong, 2022. "Selection of eco-efficient downstream distillation sequences for acetone-butanol-ethanol (ABE) purification from in situ product recovery system," Renewable Energy, Elsevier, vol. 185(C), pages 17-31.
    8. Feng, Shanghuan & Wei, Rufei & Leitch, Mathew & Xu, Chunbao Charles, 2018. "Comparative study on lignocellulose liquefaction in water, ethanol, and water/ethanol mixture: Roles of ethanol and water," Energy, Elsevier, vol. 155(C), pages 234-241.
    9. Ersayin, Erdem & Ozgener, Leyla, 2015. "Performance analysis of combined cycle power plants: A case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 832-842.
    10. Gharagheizi, Farhad & Ilani-Kashkouli, Poorandokht & Hedden, Ronald C., 2018. "Standard molar chemical exergy: A new accurate model," Energy, Elsevier, vol. 158(C), pages 924-935.
    11. Aniya, Vineet & De, Debiparna & Singh, Ashish & Satyavathi, B., 2018. "Design and operation of extractive distillation systems using different class of entrainers for the production of fuel grade tert-butyl Alcohol:A techno-economic assessment," Energy, Elsevier, vol. 144(C), pages 1013-1025.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Duan, Cong & Li, Chunli, 2023. "Energy-saving improvement of heat integration for separating dilute azeotropic components in extractive distillation," Energy, Elsevier, vol. 263(PC).
    2. Huang, Youwang & Wang, Haiyong & Zhang, Xinghua & Zhang, Qi & Wang, Chenguang & Ma, Longlong, 2022. "Accurate prediction of chemical exergy of technical lignins for exergy-based assessment on sustainable utilization processes," Energy, Elsevier, vol. 243(C).
    3. Cui, Chengtian & Qi, Meng & Zhang, Xiaodong & Sun, Jinsheng & Li, Qing & Kiss, Anton A. & Wong, David Shan-Hill & Masuku, Cornelius M. & Lee, Moonyong, 2024. "Electrification of distillation for decarbonization: An overview and perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    4. Dai, Min & Yang, Han & Yang, Fusheng & Zhang, Zaoxiao & Yu, Yunsong & Liu, Guilian & Feng, Xiao, 2022. "Multi-strategy Ensemble Non-dominated sorting genetic Algorithm-II (MENSGA-II) and application in energy-enviro-economic multi-objective optimization of separation for isopropyl alcohol/diisopropyl et," Energy, Elsevier, vol. 254(PA).
    5. Zhang, Hongru & Wang, Shuai & Tang, Jiaxuan & Li, Ningning & Li, Yanan & Cui, Peizhe & Wang, Yinglong & Zheng, Shiqing & Zhu, Zhaoyou & Ma, Yixin, 2021. "Multi-objective optimization and control strategy for extractive distillation with dividing-wall column/pervaporation for separation of ternary azeotropes based on mechanism analysis," Energy, Elsevier, vol. 229(C).
    6. Yan, Shuo & Xia, Dehong & Zhang, Xinru & Liu, Xiangjun, 2022. "Synergistic mechanism of enhanced biocrude production during hydrothermal co-liquefaction of biomass model components: A molecular dynamics simulation," Energy, Elsevier, vol. 255(C).
    7. Taner, Tolga & Sivrioglu, Mecit, 2015. "Energy–exergy analysis and optimisation of a model sugar factory in Turkey," Energy, Elsevier, vol. 93(P1), pages 641-654.
    8. Abdulrahman Almutairi & Pericles Pilidis & Nawaf Al-Mutawa, 2015. "Energetic and Exergetic Analysis of Combined Cycle Power Plant: Part-1 Operation and Performance," Energies, MDPI, vol. 8(12), pages 1-18, December.
    9. Oko, C.O.C. & Njoku, I.H., 2017. "Performance analysis of an integrated gas-, steam- and organic fluid-cycle thermal power plant," Energy, Elsevier, vol. 122(C), pages 431-443.
    10. Hegely, Laszlo & Lang, Peter, 2020. "Reduction of the energy demand of a second-generation bioethanol plant by heat integration and vapour recompression between different columns," Energy, Elsevier, vol. 208(C).
    11. Taimoor, Aqeel Ahmad & Muhammad, Ayyaz & Saleem, Waqas & Zain-ul-abdein, Muhammad, 2016. "Humidified exhaust recirculation for efficient combined cycle gas turbines," Energy, Elsevier, vol. 106(C), pages 356-366.
    12. Kim, Seong Ju & Um, Byung Hwan, 2020. "Effect of thermochemically fractionation before hydrothermal liquefaction of herbaceous biomass on biocrude characteristics," Renewable Energy, Elsevier, vol. 160(C), pages 612-622.
    13. Biswas, Bijoy & Arun Kumar, Aishwarya & Bisht, Yashasvi & Krishna, Bhavya B. & Kumar, Jitendra & Bhaskar, Thallada, 2021. "Role of temperatures and solvents on hydrothermal liquefaction of Azolla filiculoides," Energy, Elsevier, vol. 217(C).
    14. Ankit Mathanker & Snehlata Das & Deepak Pudasainee & Monir Khan & Amit Kumar & Rajender Gupta, 2021. "A Review of Hydrothermal Liquefaction of Biomass for Biofuels Production with a Special Focus on the Effect of Process Parameters, Co-Solvents, and Extraction Solvents," Energies, MDPI, vol. 14(16), pages 1-60, August.
    15. Cheng, Haiyang & Wang, Yangyang & Wang, Wenxin & Wen, Chunhe & Wei, Xuewen & Wang, Yu & Wang, Yinglong & Cui, Peizhe & Zhu, Zhaoyou, 2023. "Economic, environmental, exergy (3E) analysis and multi-objective genetic algorithm optimization of efficient and energy-saving separation of diethoxymethane/toluene/ethanol by extractive distillation," Energy, Elsevier, vol. 284(C).
    16. Guido Marseglia & Blanca Fernandez Vasquez-Pena & Carlo Maria Medaglia & Ricardo Chacartegui, 2020. "Alternative Fuels for Combined Cycle Power Plants: An Analysis of Options for a Location in India," Sustainability, MDPI, vol. 12(8), pages 1-25, April.
    17. Borujeni, Nasim Espah & Karimi, Keikhosro & Denayer, Joeri F.M. & Kumar, Rajeev, 2022. "Apple pomace biorefinery for ethanol, mycoprotein, and value-added biochemicals production by Mucor indicus," Energy, Elsevier, vol. 240(C).
    18. Maheshwari, Mayank & Singh, Onkar, 2019. "Comparative evaluation of different combined cycle configurations having simple gas turbine, steam turbine and ammonia water turbine," Energy, Elsevier, vol. 168(C), pages 1217-1236.
    19. Xu, Liang & Liu, Yangyang & Bai, Wenshuai & Tan, Zhaoyang & Xue, Wei, 2022. "Design and control of energy-saving double side-stream extractive distillation for the benzene/isopropanol/water separation," Energy, Elsevier, vol. 239(PA).
    20. Su, Changsheng & Zhang, Changwei & Wu, Yilu & Zhu, Qian & Wen, Jieyi & Wang, Yankun & Zhao, Jianbo & Liu, Yicheng & Qin, Peiyong & Cai, Di, 2022. "Combination of pH adjusting and intermittent feeding can improve fermentative acetone-butanol-ethanol (ABE) production from steam exploded corn stover," Renewable Energy, Elsevier, vol. 200(C), pages 592-600.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:205:y:2023:i:c:p:929-944. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.