IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v263y2023ipbs0360544222027293.html
   My bibliography  Save this article

Upcycling disposable face masks into fuel range iso-alkanes through hydropyrolysis coupled with vapor-phase hydrocracking

Author

Listed:
  • Wang, Jia
  • Jiang, Jianchun
  • Zhang, Yiyun
  • Meng, Xianzhi
  • Ragauskas, Arthur J.

Abstract

The COVID-19 pandemic has resulted in an alarming accumulation of plastic waste. Herein, an integrated hydropyrolysis and hydrocracking process was performed to upcycle disposable masks into fuel-range iso-alkanes over carbon supported ruthenium (Ru/C). Experimental results indicated that catalyst type significantly affected product distribution during the hydropyrolysis and vapor-phase hydrocracking of disposable masks. Compared with zeolites-induced catalytic cascade process where up to ∼25.9 wt% yield of aromatic hydrocarbons such as toluene and xylenes were generated, a ∼82.7 wt% yield of desirable iso-alkanes with a high C5–C12 gasoline selectivity of 95.5% was obtained over Ru/C under 550 °C hydropyrolysis temperature and 300 °C hydrocracking temperature at 0.2 MPa H2. The cascade hydropyrolysis and hydrocracking process also exhibited high adaptability and flexibility in upcycling single-use syringes, food packaging, and plastic bags, generating 79.1, 81.6, and 80.3 wt% yields of fuel range iso/n-alkanes, respectively. This catalytic cascade hydrotreating process provides an efficient and effective approach to convert pandemic-derived plastic waste into gasoline-range fuel products.

Suggested Citation

  • Wang, Jia & Jiang, Jianchun & Zhang, Yiyun & Meng, Xianzhi & Ragauskas, Arthur J., 2023. "Upcycling disposable face masks into fuel range iso-alkanes through hydropyrolysis coupled with vapor-phase hydrocracking," Energy, Elsevier, vol. 263(PB).
  • Handle: RePEc:eee:energy:v:263:y:2023:i:pb:s0360544222027293
    DOI: 10.1016/j.energy.2022.125843
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222027293
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.125843?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gollakota, Anjani R.K. & Reddy, Madhurima & Subramanyam, Malladi D. & Kishore, Nanda, 2016. "A review on the upgradation techniques of pyrolysis oil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1543-1568.
    2. Zhou, Chuanbin & Yang, Guang & Ma, Shijun & Liu, Yijie & Zhao, Zhilan, 2021. "The impact of the COVID-19 pandemic on waste-to-energy and waste-to-material industry in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    3. Zhang, Chi & Hui, Xin & Lin, Yuzhen & Sung, Chih-Jen, 2016. "Recent development in studies of alternative jet fuel combustion: Progress, challenges, and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 120-138.
    4. Park, Chanyeong & Choi, Heeyoung & Andrew Lin, Kun-Yi & Kwon, Eilhann E. & Lee, Jechan, 2021. "COVID-19 mask waste to energy via thermochemical pathway: Effect of Co-Feeding food waste," Energy, Elsevier, vol. 230(C).
    5. Wang, Jia & Jiang, Jianchun & Li, Dongxian & Meng, Xianzhi & Zhan, Guowu & Wang, Yunpu & Zhang, Aihua & Sun, Yunjuan & Ruan, Roger & Ragauskas, Arthur J., 2022. "Creating values from wastes: Producing biofuels from waste cooking oil via a tandem vapor-phase hydrotreating process," Applied Energy, Elsevier, vol. 323(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Magdalena Skrzyniarz & Marcin Sajdak & Monika Zajemska & Józef Iwaszko & Anna Biniek-Poskart & Andrzej Skibiński & Sławomir Morel & Paweł Niegodajew, 2022. "Plastic Waste Management towards Energy Recovery during the COVID-19 Pandemic: The Example of Protective Face Mask Pyrolysis," Energies, MDPI, vol. 15(7), pages 1-17, April.
    2. Cudjoe, Dan & Wang, Hong & zhu, Bangzhu, 2022. "Thermochemical treatment of daily COVID-19 single-use facemask waste: Power generation potential and environmental impact analysis," Energy, Elsevier, vol. 249(C).
    3. Buffi, Marco & Valera-Medina, Agustin & Marsh, Richard & Pugh, Daniel & Giles, Anthony & Runyon, Jon & Chiaramonti, David, 2017. "Emissions characterization tests for hydrotreated renewable jet fuel from used cooking oil and its blends," Applied Energy, Elsevier, vol. 201(C), pages 84-93.
    4. Long, Feng & Liu, Weiguo & Jiang, Xia & Zhai, Qiaolong & Cao, Xincheng & Jiang, Jianchun & Xu, Junming, 2021. "State-of-the-art technologies for biofuel production from triglycerides: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    5. Bohuslava Mihalčová & Antonín Korauš & Olha Prokopenko & Jozefína Hvastová & Magdaléna Freňáková & Peter Gallo & Beáta Balogová, 2021. "Effective Management Tools for Solving the Problem of Poverty in Relation to Food Waste in Context of Integrated Management of Energy," Energies, MDPI, vol. 14(14), pages 1-18, July.
    6. Nzihou, Ange & Stanmore, Brian & Lyczko, Nathalie & Minh, Doan Pham, 2019. "The catalytic effect of inherent and adsorbed metals on the fast/flash pyrolysis of biomass: A review," Energy, Elsevier, vol. 170(C), pages 326-337.
    7. Qiu, Rui & Hou, Shuhua & Meng, Zhiyi, 2021. "Low carbon air transport development trends and policy implications based on a scientometrics-based data analysis system," Transport Policy, Elsevier, vol. 107(C), pages 1-10.
    8. Kim, D. & Hadigheh, S.A., 2024. "Oxidative pyrolysis of biosolid: Air concentration effects on biochar formation and kinetics," Renewable Energy, Elsevier, vol. 224(C).
    9. Campuzano, Felipe & Brown, Robert C. & Martínez, Juan Daniel, 2019. "Auger reactors for pyrolysis of biomass and wastes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 372-409.
    10. El-Zoheiry, Radwan M. & EL-Seesy, Ahmed I. & Attia, Ali M.A. & He, Zhixia & El-Batsh, Hesham M., 2020. "Combustion and emission characteristics of Jojoba biodiesel-jet A1 mixtures applying a lean premixed pre-vaporized combustion techniques: An experimental investigation," Renewable Energy, Elsevier, vol. 162(C), pages 2227-2245.
    11. Tareq Salameh & Hegazy Rezk & Usama Issa & Siti Kartom Kamarudin & Mohammad Ali Abdelkareem & Abdul Ghani Olabi & Malek Alkasrawi, 2023. "Boosting Biodiesel Production from Dairy-Washed Scum Oil Using Beetle Antennae Search Algorithm and Fuzzy Modelling," Resources, MDPI, vol. 12(11), pages 1-14, November.
    12. Carroll, James & Brazil, William & Howard, Michael & Denny, Eleanor, 2022. "Imperfect emissions information during flight choices and the role of CO2 labelling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    13. Perkins, Greg & Batalha, Nuno & Kumar, Adarsh & Bhaskar, Thallada & Konarova, Muxina, 2019. "Recent advances in liquefaction technologies for production of liquid hydrocarbon fuels from biomass and carbonaceous wastes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    14. Andreas Goldmann & Waldemar Sauter & Marcel Oettinger & Tim Kluge & Uwe Schröder & Joerg R. Seume & Jens Friedrichs & Friedrich Dinkelacker, 2018. "A Study on Electrofuels in Aviation," Energies, MDPI, vol. 11(2), pages 1-23, February.
    15. Piotr Kordel & Radosław Wolniak, 2021. "Technology Entrepreneurship and the Performance of Enterprises in the Conditions of Covid-19 Pandemic: The Fuzzy Set Analysis of Waste to Energy Enterprises in Poland," Energies, MDPI, vol. 14(13), pages 1-22, June.
    16. Kawale, Harshal D. & Kishore, Nanda, 2020. "Comparative study on pyrolysis of Delonix Regia, Pinewood sawdust and their co-feed for plausible bio-fuels production," Energy, Elsevier, vol. 203(C).
    17. Gutiérrez-Antonio, C. & Gómez-Castro, F.I. & de Lira-Flores, J.A. & Hernández, S., 2017. "A review on the production processes of renewable jet fuel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 709-729.
    18. Ahmad, Salman & Ouenniche, Jamal & Kolosz, Ben W. & Greening, Philip & Andresen, John M. & Maroto-Valer, M. Mercedes & Xu, Bing, 2021. "A stakeholders’ participatory approach to multi-criteria assessment of sustainable aviation fuels production pathways," International Journal of Production Economics, Elsevier, vol. 238(C).
    19. Soloiu, Valentin & Wiley, Justin T. & Gaubert, Remi & Mothershed, David & Carapia, Cesar & Smith, Richard C. & Williams, Johnnie & Ilie, Marcel & Rahman, Mosfequr, 2020. "Fischer-Tropsch coal-to-liquid fuel negative temperature coefficient region (NTC) and low-temperature heat release (LTHR) in a constant volume combustion chamber (CVCC)," Energy, Elsevier, vol. 198(C).
    20. Tai, Lingyu & Hamidi, Roya & de Caprariis, Benedetta & Damizia, Martina & Paglia, Laura & Scarsella, Marco & Karimzadeh, Ramin & De Filippis, Paolo, 2022. "Guaiacol hydrotreating with in-situ generated hydrogen over ni/modified zeolite supports," Renewable Energy, Elsevier, vol. 182(C), pages 647-658.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:263:y:2023:i:pb:s0360544222027293. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.