IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v149y2020icp609-616.html
   My bibliography  Save this article

The relationship between acidity, dispersion of nickel, and performance of Ni/Al-SBA-15 catalyst on eugenol hydrodeoxygenation

Author

Listed:
  • Li, Xiangping
  • Chen, Lei
  • Chen, Guanyi
  • Zhang, Jianguang
  • Liu, Juping

Abstract

Catalytic hydrodeoxygenation (HDO) is considered as one of the most efficient methods for lignin-derived bio-oils upgrading. To reveal the relationship between the characters of Ni/Al-SBA-15 and the catalytic activity of eugenol hydrodeoxygenation in aqueous phase, Al-SBA-15 with different Si/Al ratios were synthesized using acid free method and corresponding Ni/Al-SBA-15 catalysts were prepared by incipient wetness impregnation method. The physicochemical characteristics were obtained by advanced instruments. The highest degree of nickel dispersion on Al-SBA-15 was obtained when the Si/Al ratio was 132 and the corresponding smallest average active nickel particle diameter is 38 nm. The adsorption and dispersion of nickel onto Al-SBA-15 was significantly relevant with the ratios of Brønsted acid site to Lewis acid site as well as the ratios of weak acid site to strong acid site. HDO experiments were carried out over Ni/Al-SBA-15 with different Si/Al ratios. 16Ni/S2-R catalyst with high quantity of acid sites and good dispersion of nickel showed high catalytic activity during hydrodeoxygenation of eugenol. A possible reaction mechanism was concluded based on the reaction results.

Suggested Citation

  • Li, Xiangping & Chen, Lei & Chen, Guanyi & Zhang, Jianguang & Liu, Juping, 2020. "The relationship between acidity, dispersion of nickel, and performance of Ni/Al-SBA-15 catalyst on eugenol hydrodeoxygenation," Renewable Energy, Elsevier, vol. 149(C), pages 609-616.
  • Handle: RePEc:eee:renene:v:149:y:2020:i:c:p:609-616
    DOI: 10.1016/j.renene.2019.12.094
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119319664
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.12.094?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Yuping & Huang, Xiaoming & Zhang, Qian & Chen, Lungang & Zhang, Xinghua & Wang, Tiejun & Ma, Longlong, 2015. "Hydrogenation and hydrodeoxygenation of difurfurylidene acetone to liquid alkanes over Raney Ni and the supported Pt catalysts," Applied Energy, Elsevier, vol. 160(C), pages 990-998.
    2. Zhang, Xinghua & Tang, Wenwu & Zhang, Qi & Wang, Tiejun & Ma, Longlong, 2018. "Hydrodeoxygenation of lignin-derived phenoic compounds to hydrocarbon fuel over supported Ni-based catalysts," Applied Energy, Elsevier, vol. 227(C), pages 73-79.
    3. Chen, Shuang & Miao, Caixia & Luo, Yan & Zhou, Guilin & Xiong, Kun & Jiao, Zhaojie & Zhang, Xianming, 2018. "Study of catalytic hydrodeoxygenation performance of Ni catalysts: Effects of prepared method," Renewable Energy, Elsevier, vol. 115(C), pages 1109-1117.
    4. Li, Xiangping & Chen, Guanyi & Liu, Caixia & Ma, Wenchao & Yan, Beibei & Zhang, Jianguang, 2017. "Hydrodeoxygenation of lignin-derived bio-oil using molecular sieves supported metal catalysts: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 296-308.
    5. Wang, Tiejun & Qiu, Songbai & Weng, Yujing & Chen, Lungang & Liu, Qiying & Long, Jinxing & Tan, Jin & Zhang, Qing & Zhang, Qi & Ma, Longlong, 2015. "Liquid fuel production by aqueous phase catalytic transformation of biomass for aviation," Applied Energy, Elsevier, vol. 160(C), pages 329-335.
    6. Hewer, Thiago L.R. & Souza, Adriana G.F. & Roseno, Karina T.C. & Moreira, Paulo F. & Bonfim, Rodrigo & Alves, Rita M.B. & Schmal, Martin, 2018. "Influence of acid sites on the hydrodeoxygenation of anisole with metal supported on SBA-15 and SAPO-11," Renewable Energy, Elsevier, vol. 119(C), pages 615-624.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gao, Xueying & Li, Helong & Wang, Shuizhong & Liu, Zhenzhen & Ma, Jian-feng & Liu, Xing-e & Song, Guoyong, 2022. "Hydrodeoxygenation of lignin biophenolics to cyclohexanes over sub-nanometric Ru multifunctional catalyst," Renewable Energy, Elsevier, vol. 201(P1), pages 724-733.
    2. Tai, Lingyu & Hamidi, Roya & de Caprariis, Benedetta & Damizia, Martina & Paglia, Laura & Scarsella, Marco & Karimzadeh, Ramin & De Filippis, Paolo, 2022. "Guaiacol hydrotreating with in-situ generated hydrogen over ni/modified zeolite supports," Renewable Energy, Elsevier, vol. 182(C), pages 647-658.
    3. Gollakota, Anjani R.K. & Shu, Chi-Min & Sarangi, Prakash Kumar & Shadangi, Krushna Prasad & Rakshit, Sudip & Kennedy, John F. & Gupta, Vijai Kumar & Sharma, Minaxi, 2023. "Catalytic hydrodeoxygenation of bio-oil and model compounds - Choice of catalysts, and mechanisms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    4. Chen, Guanyi & Liu, Juping & Li, Xiangping & Zhang, Jianguang & Yin, Han & Su, Zhenping, 2020. "Investigation on catalytic hydrodeoxygenation of eugenol blend with light fraction in bio-oil over Ni-based catalysts," Renewable Energy, Elsevier, vol. 157(C), pages 456-465.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Shuang & Zhou, Guilin & Miao, Caixia, 2019. "Green and renewable bio-diesel produce from oil hydrodeoxygenation: Strategies for catalyst development and mechanism," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 568-589.
    2. Jin, Wei & Gandara-Loe, Jesus & Pastor-Pérez, Laura & Villora-Picó, Juan J. & Sepúlveda-Escribano, Antonio & Rinaldi, Roberto & Reina, Tomas Ramirez, 2023. "Guaiacol hydrotreatment in an integrated APR-HDO process: Exploring the promoting effect of platinum on Ni–Pt catalysts and assessing methanol and glycerol as hydrogen sources," Renewable Energy, Elsevier, vol. 215(C).
    3. Sharma, Vinit & Getahun, Tokuma & Verma, Minal & Villa, Alberto & Gupta, Neeraj, 2020. "Carbon based catalysts for the hydrodeoxygenation of lignin and related molecules: A powerful tool for the generation of non-petroleum chemical products including hydrocarbons," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    4. Zhang, Xing & Wang, Kaige & Chen, Junhao & Zhu, Lingjun & Wang, Shurong, 2020. "Mild hydrogenation of bio-oil and its derived phenolic monomers over Pt–Ni bimetal-based catalysts," Applied Energy, Elsevier, vol. 275(C).
    5. Ramesh, Arumugam & Tamizhdurai, Perumal & Shanthi, Kannan, 2019. "Catalytic hydrodeoxygenation of jojoba oil to the green-fuel application on Ni-MoS/Mesoporous zirconia-silica catalysts," Renewable Energy, Elsevier, vol. 138(C), pages 161-173.
    6. Huang, Yi & Yi, Qun & Wei, Guo-qiang & Kang, Jing-xian & Li, Wen-ying & Feng, Jie & Xie, Ke-chang, 2018. "Energy use, greenhouse gases emission and cost effectiveness of an integrated high– and low–temperature Fisher–Tropsch synthesis plant from a lifecycle viewpoint," Applied Energy, Elsevier, vol. 228(C), pages 1009-1019.
    7. Fan, Liangliang & Ruan, Roger & Li, Jun & Ma, Longlong & Wang, Chenguang & Zhou, Wenguang, 2020. "Aromatics production from fast co-pyrolysis of lignin and waste cooking oil catalyzed by HZSM-5 zeolite," Applied Energy, Elsevier, vol. 263(C).
    8. Nanduri, Arvind & Kulkarni, Shreesh S. & Mills, Patrick L., 2021. "Experimental techniques to gain mechanistic insight into fast pyrolysis of lignocellulosic biomass: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    9. Ma, Wenchao & Liu, Bin & Zhang, Ruixue & Gu, Tianbao & Ji, Xiang & Zhong, Lei & Chen, Guanyi & Ma, Longlong & Cheng, Zhanjun & Li, Xiangping, 2018. "Co-upgrading of raw bio-oil with kitchen waste oil through fluid catalytic cracking (FCC)," Applied Energy, Elsevier, vol. 217(C), pages 233-240.
    10. Miao, Caixia & Zhou, Guilin & Chen, Shuang & Xie, Hongmei & Zhang, Xianming, 2020. "Synergistic effects between Cu and Ni species in NiCu/γ-Al2O3 catalysts for hydrodeoxygenation of methyl laurate," Renewable Energy, Elsevier, vol. 153(C), pages 1439-1454.
    11. Jahromi, Hossein & Agblevor, Foster A., 2017. "Upgrading of pinyon-juniper catalytic pyrolysis oil via hydrodeoxygenation," Energy, Elsevier, vol. 141(C), pages 2186-2195.
    12. Oh, Shinyoung & Lee, Jae Hoon & Choi, Joon Weon, 2020. "Hydrodeoxygenation of crude bio-oil with various metal catalysts in a continuous-flow reactor and evaluation of emulsion properties of upgraded bio-oil with petroleum fuel," Renewable Energy, Elsevier, vol. 160(C), pages 1160-1167.
    13. Bakhtyari, Ali & Rahimpour, Mohammad Reza & Raeissi, Sona, 2020. "Cobalt-molybdenum catalysts for the hydrodeoxygenation of cyclohexanone," Renewable Energy, Elsevier, vol. 150(C), pages 443-455.
    14. Zhang, Xuesong & Lei, Hanwu & Zhu, Lei & Qian, Moriko & Zhu, Xiaolu & Wu, Joan & Chen, Shulin, 2016. "Enhancement of jet fuel range alkanes from co-feeding of lignocellulosic biomass with plastics via tandem catalytic conversions," Applied Energy, Elsevier, vol. 173(C), pages 418-430.
    15. Agus Haryanto & Wahyu Hidayat & Udin Hasanudin & Dewi Agustina Iryani & Sangdo Kim & Sihyun Lee & Jiho Yoo, 2021. "Valorization of Indonesian Wood Wastes through Pyrolysis: A Review," Energies, MDPI, vol. 14(5), pages 1-25, March.
    16. Xu, Jie & Yuan, Zhenhong & Chang, Shiyan, 2018. "Long-term cost trajectories for biofuels in China projected to 2050," Energy, Elsevier, vol. 160(C), pages 452-465.
    17. Gollakota, Anjani R.K. & Shu, Chi-Min & Sarangi, Prakash Kumar & Shadangi, Krushna Prasad & Rakshit, Sudip & Kennedy, John F. & Gupta, Vijai Kumar & Sharma, Minaxi, 2023. "Catalytic hydrodeoxygenation of bio-oil and model compounds - Choice of catalysts, and mechanisms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    18. Perkins, Greg & Bhaskar, Thallada & Konarova, Muxina, 2018. "Process development status of fast pyrolysis technologies for the manufacture of renewable transport fuels from biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 292-315.
    19. Kuo, Yen-Ting & Almansa, G. Aranda & Vreugdenhil, B.J., 2018. "Catalytic aromatization of ethylene in syngas from biomass to enhance economic sustainability of gas production," Applied Energy, Elsevier, vol. 215(C), pages 21-30.
    20. Arun, J. & Raghu, R. & Suhail Madhar Hanif, S. & Thilak, P.G. & Sridhar, D. & Nirmala, N. & Dawn, S.S. & Sivaramakrishnan, R. & Chi, Nguyen Thuy Lan & Pugazhendhi, Arivalagan, 2022. "A comparative review on photo and mixotrophic mode of algae cultivation: Thermochemical processing of biomass, necessity of bio-oil upgrading, challenges and future roadmaps," Applied Energy, Elsevier, vol. 325(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:149:y:2020:i:c:p:609-616. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.