IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v172y2021icp1194-1211.html
   My bibliography  Save this article

Controlling dynamic stall using vortex generators on a wind turbine airfoil

Author

Listed:
  • De Tavernier, D.
  • Ferreira, C.
  • Viré, A.
  • LeBlanc, B.
  • Bernardy, S.

Abstract

Vortex generators (VGs) have proven their capabilities in wind turbine applications to delay stall in steady flow conditions. However, their behaviour in unsteady conditions is insufficiently understood. This paper presents an experimental study that demonstrates the effect of VGs in unsteady flow, including controlling and suppressing the dynamic stall process. An airfoil, particularly designed for a vertical-axis wind turbine, has been tested in a wind tunnel in steady flow and unsteady flow caused by a sinusoidal pitching motion. The steady and unsteady pressure distributions, lift, drag and moment were measured for a range of cases. The cases vary in motion (mean angle of attack, frequency, amplitude) and VG configuration. VGs have shown to delay or even suppress dynamic stall depending on the VG configuration, with particularly important factors being VG height and VG mounting position. The VGs promote a later dynamic stall onset and reduce the hysteresis loop. As soon as the VG’s effectiveness vanishes, the configurations with VGs show a severe loss in normal coefficient, larger than in the case of the clear airfoil. However, the flow reattaches quicker and the airfoil recovers easier from the deep-stall conditions. The experimental results demonstrate that the use of VGs significantly changes the unsteady aerodynamic loads. This experimental database can serve for validation purposes to evaluate whether current modelling strategies in unsteady conditions are sufficient for blades equipped with VGs.

Suggested Citation

  • De Tavernier, D. & Ferreira, C. & Viré, A. & LeBlanc, B. & Bernardy, S., 2021. "Controlling dynamic stall using vortex generators on a wind turbine airfoil," Renewable Energy, Elsevier, vol. 172(C), pages 1194-1211.
  • Handle: RePEc:eee:renene:v:172:y:2021:i:c:p:1194-1211
    DOI: 10.1016/j.renene.2021.03.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121003736
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.03.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Xiong & Liang, Shi & Li, Gangqiang & Godbole, Ajit & Lu, Cheng, 2020. "An improved dynamic stall model and its effect on wind turbine fatigue load prediction," Renewable Energy, Elsevier, vol. 156(C), pages 117-130.
    2. Greenblatt, David & Lautman, Ronen, 2015. "Inboard/outboard plasma actuation on a vertical-axis wind turbine," Renewable Energy, Elsevier, vol. 83(C), pages 1147-1156.
    3. Velasco, D. & López Mejia, O. & Laín, S., 2017. "Numerical simulations of active flow control with synthetic jets in a Darrieus turbine," Renewable Energy, Elsevier, vol. 113(C), pages 129-140.
    4. He-Yong Xu & Chen-Liang Qiao & Zheng-Yin Ye, 2016. "Dynamic Stall Control on the Wind Turbine Airfoil via a Co-Flow Jet," Energies, MDPI, vol. 9(6), pages 1-25, June.
    5. Choudhry, Amanullah & Arjomandi, Maziar & Kelso, Richard, 2016. "Methods to control dynamic stall for wind turbine applications," Renewable Energy, Elsevier, vol. 86(C), pages 26-37.
    6. Müller-Vahl, Hanns Friedrich & Nayeri, Christian Navid & Paschereit, Christian Oliver & Greenblatt, David, 2016. "Dynamic stall control via adaptive blowing," Renewable Energy, Elsevier, vol. 97(C), pages 47-64.
    7. Greenblatt, David & Schulman, Magen & Ben-Harav, Amos, 2012. "Vertical axis wind turbine performance enhancement using plasma actuators," Renewable Energy, Elsevier, vol. 37(1), pages 345-354.
    8. Eduard Dyachuk & Anders Goude, 2015. "Simulating Dynamic Stall Effects for Vertical Axis Wind Turbines Applying a Double Multiple Streamtube Model," Energies, MDPI, vol. 8(2), pages 1-20, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Pengzhong & Wang, Lu & Huang, Bin & Wu, Rui & Wang, Yu, 2024. "The effects of vortex generators on the characteristics of the tip hydrofoil and the horizontal axis tidal turbine blade," Renewable Energy, Elsevier, vol. 224(C).
    2. Koca, Kemal & Genç, Mustafa Serdar & Ertürk, Sevde, 2022. "Impact of local flexible membrane on power efficiency stability at wind turbine blade," Renewable Energy, Elsevier, vol. 197(C), pages 1163-1173.
    3. Le Fouest, Sébastien & Mulleners, Karen, 2022. "The dynamic stall dilemma for vertical-axis wind turbines," Renewable Energy, Elsevier, vol. 198(C), pages 505-520.
    4. Chang, Hong & Li, Deyou & Zhang, Ruiyi & Wang, Hongjie & He, Yurong & Zuo, Zhigang & Liu, Shuhong, 2024. "Effect of discontinuous biomimetic leading-edge protuberances on the performance of vertical axis wind turbines," Applied Energy, Elsevier, vol. 364(C).
    5. Liu, Qingsong & Miao, Weipao & Ye, Qi & Li, Chun, 2022. "Performance assessment of an innovative Gurney flap for straight-bladed vertical axis wind turbine," Renewable Energy, Elsevier, vol. 185(C), pages 1124-1138.
    6. Jiang, Ruifang & Zhao, Zhenzhou & Liu, Huiwen & Wang, Tongguang & Chen, Ming & Feng, Junxin & Wang, Dingding, 2022. "Numerical study on the influence of vortex generators on wind turbine aerodynamic performance considering rotational effect," Renewable Energy, Elsevier, vol. 186(C), pages 730-741.
    7. Wu, Baigong & Zhan, Mingjing & Wu, Rujian & Zhang, Xiao, 2023. "The investigation of a coaxial twin-counter-rotating turbine with variable-pitch adaptive blades," Energy, Elsevier, vol. 267(C).
    8. Jia, Yaya & Huang, Jiachen & Liu, Qingkuan & Zhao, Zonghan & Dong, Menghui, 2024. "The wind tunnel test research on the aerodynamic stability of wind turbine airfoils," Energy, Elsevier, vol. 294(C).
    9. Zhu, Chengyong & Feng, Yi & Shen, Xiang & Dang, Zhigao & Chen, Jie & Qiu, Yingning & Feng, Yanhui & Wang, Tongguang, 2023. "Effects of the height and chordwise installation of the vane-type vortex generators on the unsteady aerodynamics of a wind turbine airfoil undergoing dynamic stall," Energy, Elsevier, vol. 266(C).
    10. Taurista P. Syawitri & Yufeng Yao & Jun Yao & Budi Chandra, 2022. "A review on the use of passive flow control devices as performance enhancement of lift‐type vertical axis wind turbines," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 11(4), July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhu, Chengyong & Qiu, Yingning & Wang, Tongguang, 2021. "Dynamic stall of the wind turbine airfoil and blade undergoing pitch oscillations: A comparative study," Energy, Elsevier, vol. 222(C).
    2. Zhu, Chengyong & Chen, Jie & Wu, Jianghai & Wang, Tongguang, 2019. "Dynamic stall control of the wind turbine airfoil via single-row and double-row passive vortex generators," Energy, Elsevier, vol. 189(C).
    3. Gorle, J.M.R. & Chatellier, L. & Pons, F. & Ba, M., 2019. "Modulated circulation control around the blades of a vertical axis hydrokinetic turbine for flow control and improved performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 363-377.
    4. Velasco, D. & López Mejia, O. & Laín, S., 2017. "Numerical simulations of active flow control with synthetic jets in a Darrieus turbine," Renewable Energy, Elsevier, vol. 113(C), pages 129-140.
    5. Acarer, Sercan, 2020. "Peak lift-to-drag ratio enhancement of the DU12W262 airfoil by passive flow control and its impact on horizontal and vertical axis wind turbines," Energy, Elsevier, vol. 201(C).
    6. Fatehi, Mostafa & Nili-Ahmadabadi, Mahdi & Nematollahi, Omid & Minaiean, Ali & Kim, Kyung Chun, 2019. "Aerodynamic performance improvement of wind turbine blade by cavity shape optimization," Renewable Energy, Elsevier, vol. 132(C), pages 773-785.
    7. Zhong, Junwei & Li, Jingyin & Guo, Penghua & Wang, Yu, 2019. "Dynamic stall control on a vertical axis wind turbine aerofoil using leading-edge rod," Energy, Elsevier, vol. 174(C), pages 246-260.
    8. Guoqiang, Li & Weiguo, Zhang & Yubiao, Jiang & Pengyu, Yang, 2019. "Experimental investigation of dynamic stall flow control for wind turbine airfoils using a plasma actuator," Energy, Elsevier, vol. 185(C), pages 90-101.
    9. Liu, Jian & Zhu, Wenqing & Xiao, Zhixiang & Sun, Haisheng & Huang, Yong & Liu, Zhitao, 2018. "DDES with adaptive coefficient for stalled flows past a wind turbine airfoil," Energy, Elsevier, vol. 161(C), pages 846-858.
    10. Vergaerde, Antoine & De Troyer, Tim & Standaert, Lieven & Kluczewska-Bordier, Joanna & Pitance, Denis & Immas, Alexandre & Silvert, Frédéric & Runacres, Mark C., 2020. "Experimental validation of the power enhancement of a pair of vertical-axis wind turbines," Renewable Energy, Elsevier, vol. 146(C), pages 181-187.
    11. Müller-Vahl, Hanns Friedrich & Pechlivanoglou, Georgios & Nayeri, Christian Navid & Paschereit, Christian Oliver & Greenblatt, David, 2017. "Matched pitch rate extensions to dynamic stall on rotor blades," Renewable Energy, Elsevier, vol. 105(C), pages 505-519.
    12. Rezaeiha, Abdolrahim & Montazeri, Hamid & Blocken, Bert, 2019. "Active flow control for power enhancement of vertical axis wind turbines: Leading-edge slot suction," Energy, Elsevier, vol. 189(C).
    13. Sun, Jinjing & Sun, Xiaojing & Huang, Diangui, 2020. "Aerodynamics of vertical-axis wind turbine with boundary layer suction – Effects of suction momentum," Energy, Elsevier, vol. 209(C).
    14. Zhu, Chengyong & Feng, Yi & Shen, Xiang & Dang, Zhigao & Chen, Jie & Qiu, Yingning & Feng, Yanhui & Wang, Tongguang, 2023. "Effects of the height and chordwise installation of the vane-type vortex generators on the unsteady aerodynamics of a wind turbine airfoil undergoing dynamic stall," Energy, Elsevier, vol. 266(C).
    15. Taurista P. Syawitri & Yufeng Yao & Jun Yao & Budi Chandra, 2022. "A review on the use of passive flow control devices as performance enhancement of lift‐type vertical axis wind turbines," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 11(4), July.
    16. Mohammadi, Morteza & Maghrebi, Mohammad Javad, 2021. "Improvement of wind turbine aerodynamic performance by vanquishing stall with active multi air jet blowing," Energy, Elsevier, vol. 224(C).
    17. Unai Fernandez-Gamiz & Ekaitz Zulueta & Ana Boyano & Igor Ansoategui & Irantzu Uriarte, 2017. "Five Megawatt Wind Turbine Power Output Improvements by Passive Flow Control Devices," Energies, MDPI, vol. 10(6), pages 1-15, May.
    18. Wu, Jie & Shen, Meng & Jiang, Lan, 2020. "Role of synthetic jet control in energy harvesting capability of a semi-active flapping airfoil," Energy, Elsevier, vol. 208(C).
    19. Zhong, Junwei & Li, Jingyin & Liu, Huizhong, 2023. "Dynamic mode decomposition analysis of flow separation control on wind turbine airfoil using leading−edge rod," Energy, Elsevier, vol. 268(C).
    20. Mahboubidoust, A. & Ramiar, A., 2017. "Investigation of DBD plasma actuator effect on the aerodynamic and thermodynamic performance of high solidity Wells turbine," Renewable Energy, Elsevier, vol. 112(C), pages 347-364.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:172:y:2021:i:c:p:1194-1211. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.