IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v305y2024ics0360544224020085.html
   My bibliography  Save this article

Dynamic stall modeling of wind turbine blade sections based on a data-knowledge fusion method

Author

Listed:
  • Shi, Zijie
  • Gao, Chuanqiang
  • Dou, Zihao
  • Zhang, Weiwei

Abstract

Dynamic stall often leads to unsteady load and performance degradation in horizontal axis wind turbines. Therefore, accurate modeling of dynamic stall is crucial. However, due to the large variations of the blade aerodynamic profiles and the complexity of dynamic stall flow, numerical simulation and wind tunnel experiment are costly. On the other hand, widely used semi-empirical models have limited accuracy. Hence, this paper proposes a data-knowledge fusion method that incorporates physical knowledge into a neural network to improve its accuracy and generalization ability. Firstly, the force components of the Leishman–Beddoes model are incorporated into the network. An efficient dynamic stall model for the S809 airfoil is thus established with a small amount of high-precision experimental data. It achieves extrapolation predictions of reduced frequency and angle of attack with only 1/5 of the samples in the database to train. Moreover, to make full use of the accumulated existing airfoil data to assist in modeling other airfoils, the obtained S809 model is fused in the network to predict the aerodynamics of S810 and S814. The average relative error of the prediction cases is nearly 10%. Comprehensively, this paper provides a new paradigm for assessing the dynamic stall of the wind turbine blade.

Suggested Citation

  • Shi, Zijie & Gao, Chuanqiang & Dou, Zihao & Zhang, Weiwei, 2024. "Dynamic stall modeling of wind turbine blade sections based on a data-knowledge fusion method," Energy, Elsevier, vol. 305(C).
  • Handle: RePEc:eee:energy:v:305:y:2024:i:c:s0360544224020085
    DOI: 10.1016/j.energy.2024.132234
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224020085
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.132234?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:305:y:2024:i:c:s0360544224020085. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.