IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v198y2022icp505-520.html
   My bibliography  Save this article

The dynamic stall dilemma for vertical-axis wind turbines

Author

Listed:
  • Le Fouest, Sébastien
  • Mulleners, Karen

Abstract

Vertical-axis wind turbines (VAWT) are excellent candidates to complement traditional wind turbines and increase the total wind energy capacity. Development of VAWT has been hampered by their low efficiency and structural unreliability, which are related to the occurrence of dynamic stall. Dynamic stall consists of the formation, growth, and shedding of large-scale vortices, followed by massive flow separation. The vortex shedding is detrimental to the turbine's efficiency and causes significant load fluctuations that jeopardise the turbine's structural integrity. We present a comprehensive experimental characterisation of dynamic stall on a VAWT blade including time-resolved load and velocity field measurements. Particular attention is dedicated to the dilemma faced by VAWT to either operate at lower tip-speed ratios to maximise their peak aerodynamic performance but experience dynamic stall, or to avoid dynamic stall at the cost of reducing their peak performance. Based on the results, we map turbine operating conditions to one of three regimes: deep stall, light stall, and no stall. The light stall regime offers VAWT the best compromise in the dynamic stall dilemma as it yields positive tangential forces during the upwind and downwind rotation and reduces load transients by 75% compared to the deep stall regime.

Suggested Citation

  • Le Fouest, Sébastien & Mulleners, Karen, 2022. "The dynamic stall dilemma for vertical-axis wind turbines," Renewable Energy, Elsevier, vol. 198(C), pages 505-520.
  • Handle: RePEc:eee:renene:v:198:y:2022:i:c:p:505-520
    DOI: 10.1016/j.renene.2022.07.071
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122010722
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.07.071?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. de Castro, Carlos & Mediavilla, Margarita & Miguel, Luis Javier & Frechoso, Fernando, 2011. "Global wind power potential: Physical and technological limits," Energy Policy, Elsevier, vol. 39(10), pages 6677-6682, October.
    2. Ross, Hannah & Polagye, Brian, 2020. "An experimental assessment of analytical blockage corrections for turbines," Renewable Energy, Elsevier, vol. 152(C), pages 1328-1341.
    3. Rezaeiha, Abdolrahim & Kalkman, Ivo & Blocken, Bert, 2017. "Effect of pitch angle on power performance and aerodynamics of a vertical axis wind turbine," Applied Energy, Elsevier, vol. 197(C), pages 132-150.
    4. Dupont, Elise & Koppelaar, Rembrandt & Jeanmart, Hervé, 2018. "Global available wind energy with physical and energy return on investment constraints," Applied Energy, Elsevier, vol. 209(C), pages 322-338.
    5. Kate Marvel & Ben Kravitz & Ken Caldeira, 2013. "Geophysical limits to global wind power," Nature Climate Change, Nature, vol. 3(2), pages 118-121, February.
    6. De Tavernier, D. & Ferreira, C. & Viré, A. & LeBlanc, B. & Bernardy, S., 2021. "Controlling dynamic stall using vortex generators on a wind turbine airfoil," Renewable Energy, Elsevier, vol. 172(C), pages 1194-1211.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Keisar, David & Arava, Idan & Greenblatt, David, 2024. "Dynamic-stall-driven vertical axis wind turbine: An experimental parametric study," Applied Energy, Elsevier, vol. 365(C).
    2. Chang, Hong & Li, Deyou & Zhang, Ruiyi & Wang, Hongjie & He, Yurong & Zuo, Zhigang & Liu, Shuhong, 2024. "Effect of discontinuous biomimetic leading-edge protuberances on the performance of vertical axis wind turbines," Applied Energy, Elsevier, vol. 364(C).
    3. Arredondo-Galeana, Abel & Olbert, Gerrit & Shi, Weichao & Brennan, Feargal, 2023. "Near wake hydrodynamics and structural design of a single foil cycloidal rotor in regular waves," Renewable Energy, Elsevier, vol. 206(C), pages 1020-1035.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Qingsong & Miao, Weipao & Ye, Qi & Li, Chun, 2022. "Performance assessment of an innovative Gurney flap for straight-bladed vertical axis wind turbine," Renewable Energy, Elsevier, vol. 185(C), pages 1124-1138.
    2. Bechtle, Philip & Schelbergen, Mark & Schmehl, Roland & Zillmann, Udo & Watson, Simon, 2019. "Airborne wind energy resource analysis," Renewable Energy, Elsevier, vol. 141(C), pages 1103-1116.
    3. Sébastien Le Fouest & Karen Mulleners, 2024. "Optimal blade pitch control for enhanced vertical-axis wind turbine performance," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    4. Villeneuve, Thierry & Dumas, Guy, 2021. "Impact of some design considerations on the wake recovery of vertical-axis turbines," Renewable Energy, Elsevier, vol. 180(C), pages 1419-1438.
    5. Huang, Junling & McElroy, Michael B., 2015. "A 32-year perspective on the origin of wind energy in a warming climate," Renewable Energy, Elsevier, vol. 77(C), pages 482-492.
    6. Hassan, Syed Saddam ul & Javaid, M. Tariq & Rauf, Umar & Nasir, Sheharyar & Shahzad, Aamer & Salamat, Shuaib, 2023. "Systematic investigation of power enhancement of Vertical Axis Wind Turbines using bio-inspired leading edge tubercles," Energy, Elsevier, vol. 270(C).
    7. Hong, Sanghyun & Kim, Eunsung & Jeong, Saerok, 2023. "Evaluating the sustainability of the hydrogen economy using multi-criteria decision-making analysis in Korea," Renewable Energy, Elsevier, vol. 204(C), pages 485-492.
    8. Xu, Wei & Chen, Genglin & Shi, Huijin & Zhang, Pengcheng & Chen, Xuemei, 2023. "Research on operational characteristics of coal power centrifugal fans at off-design working conditions based on flap-angle adjustment," Energy, Elsevier, vol. 284(C).
    9. Mediavilla, Margarita & de Castro, Carlos & Capellán, Iñigo & Javier Miguel, Luis & Arto, Iñaki & Frechoso, Fernando, 2013. "The transition towards renewable energies: Physical limits and temporal conditions," Energy Policy, Elsevier, vol. 52(C), pages 297-311.
    10. Chang, Hong & Li, Deyou & Zhang, Ruiyi & Wang, Hongjie & He, Yurong & Zuo, Zhigang & Liu, Shuhong, 2024. "Effect of discontinuous biomimetic leading-edge protuberances on the performance of vertical axis wind turbines," Applied Energy, Elsevier, vol. 364(C).
    11. Jacques, Pierre & Delannoy, Louis & Andrieu, Baptiste & Yilmaz, Devrim & Jeanmart, Hervé & Godin, Antoine, 2023. "Assessing the economic consequences of an energy transition through a biophysical stock-flow consistent model," Ecological Economics, Elsevier, vol. 209(C).
    12. Barnea, Gil & Hagemann, Christian & Wurster, Stefan, 2022. "Policy instruments matter: Support schemes for renewable energy capacity in worldwide comparison," Energy Policy, Elsevier, vol. 168(C).
    13. Liu, Jian & Zhu, Wenqing & Xiao, Zhixiang & Sun, Haisheng & Huang, Yong & Liu, Zhitao, 2018. "DDES with adaptive coefficient for stalled flows past a wind turbine airfoil," Energy, Elsevier, vol. 161(C), pages 846-858.
    14. Antonini, Enrico G.A. & Caldeira, Ken, 2021. "Atmospheric pressure gradients and Coriolis forces provide geophysical limits to power density of large wind farms," Applied Energy, Elsevier, vol. 281(C).
    15. Dupont, Elise & Koppelaar, Rembrandt & Jeanmart, Hervé, 2018. "Global available wind energy with physical and energy return on investment constraints," Applied Energy, Elsevier, vol. 209(C), pages 322-338.
    16. Jaime Liew & Kirby S. Heck & Michael F. Howland, 2024. "Unified momentum model for rotor aerodynamics across operating regimes," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    17. Jean-François Fagnart & Marc Germain & Benjamin Peeters, 2020. "Can the Energy Transition Be Smooth? A General Equilibrium Approach to the EROEI," Sustainability, MDPI, vol. 12(3), pages 1-29, February.
    18. Luo, Shihua & Hu, Weihao & Liu, Wen & Zhang, Zhenyuan & Bai, Chunguang & Huang, Qi & Chen, Zhe, 2022. "Study on the decarbonization in China's power sector under the background of carbon neutrality by 2060," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    19. Wong, Kok Hoe & Chong, Wen Tong & Poh, Sin Chew & Shiah, Yui-Chuin & Sukiman, Nazatul Liana & Wang, Chin-Tsan, 2018. "3D CFD simulation and parametric study of a flat plate deflector for vertical axis wind turbine," Renewable Energy, Elsevier, vol. 129(PA), pages 32-55.
    20. Elkhoury, M. & Kiwata, T. & Nagao, K. & Kono, T. & ElHajj, F., 2018. "Wind tunnel experiments and Delayed Detached Eddy Simulation of a three-bladed micro vertical axis wind turbine," Renewable Energy, Elsevier, vol. 129(PA), pages 63-74.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:198:y:2022:i:c:p:505-520. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.