IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v224y2024ics0960148124001812.html
   My bibliography  Save this article

The effects of vortex generators on the characteristics of the tip hydrofoil and the horizontal axis tidal turbine blade

Author

Listed:
  • Wang, Pengzhong
  • Wang, Lu
  • Huang, Bin
  • Wu, Rui
  • Wang, Yu

Abstract

The blade of horizontal axial tidal turbine (HATT) will experience unsteady characteristics, such as dynamic stall, hysteresis loop, and stall delay, leading to unsteady loads that challenge its performance and survivability in the complex ocean environment with turbulent flow, waves, and shear flow. Installing vortex generators (VGs) on the blade surface effectively controls flow separation and improves the performance of the HATT blades. However, most existing VGs studies focus on two-dimensional models that do not consider the tip vortex, requiring further research to investigate the influence of VGs on the blade tip and their potential benefits. This study investigates the static and dynamic effects of different VGs parameters on the NACA63820 hydrofoil installed at the tip through hydrofoil water tunnel experiments and numerical simulations to understand the advantages of using VGs in this configuration. The results show that VGs alter the pressure distribution on the hydrofoil's surface, leading to the formation of pressure humps in the pressure curve of the hydrofoil section. The number and orientation of these humps depend on the openings of the VGs. This study comprehensively analyzes the factors causing these humps and their effects. In conclusion, installing appropriate VGs at the tip significantly improve the hydrofoil's performance and reduce the size of the hysteresis loop opening. Comparing different VGs identifies optimal parameters for HATT blades and evaluate their performance through numerical simulations. The results show that installing VGs at the 30% chord position of the airfoil section can improves the power coefficient by 1.6% at the optimal blade tip speed and broadens the operating range of the HATT.

Suggested Citation

  • Wang, Pengzhong & Wang, Lu & Huang, Bin & Wu, Rui & Wang, Yu, 2024. "The effects of vortex generators on the characteristics of the tip hydrofoil and the horizontal axis tidal turbine blade," Renewable Energy, Elsevier, vol. 224(C).
  • Handle: RePEc:eee:renene:v:224:y:2024:i:c:s0960148124001812
    DOI: 10.1016/j.renene.2024.120116
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124001812
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.120116?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xinkai Li & Ke Yang & Xiaodong Wang, 2019. "Experimental and Numerical Analysis of the Effect of Vortex Generator Height on Vortex Characteristics and Airfoil Aerodynamic Performance," Energies, MDPI, vol. 12(5), pages 1-19, March.
    2. Hu, Danmei & Hua, Ouyang & Du, Zhaohui, 2006. "A study on stall-delay for horizontal axis wind turbine," Renewable Energy, Elsevier, vol. 31(6), pages 821-836.
    3. Milne, I.A. & Day, A.H. & Sharma, R.N. & Flay, R.G.J., 2016. "The characterisation of the hydrodynamic loads on tidal turbines due to turbulence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 851-864.
    4. Zhang, Zhi & Zhang, Yuquan & Zheng, Yuan & Zhang, Jisheng & Fernandez-Rodriguez, Emmanuel & Zang, Wei & Ji, Renwei, 2023. "Power fluctuation and wake characteristics of tidal stream turbine subjected to wave and current interaction," Energy, Elsevier, vol. 264(C).
    5. Scarlett, Gabriel Thomas & Sellar, Brian & van den Bremer, Ton & Viola, Ignazio Maria, 2019. "Unsteady hydrodynamics of a full-scale tidal turbine operating in large wave conditions," Renewable Energy, Elsevier, vol. 143(C), pages 199-213.
    6. Huang, Bin & Wang, Pengzhong & Wang, Lu & Cao, Tingfa & Wu, Dazhuan & Wu, Peng, 2021. "A combined method of CFD simulation and modified Beddoes-Leishman model to predict the dynamic stall characterizations of S809 airfoil," Renewable Energy, Elsevier, vol. 179(C), pages 1636-1649.
    7. Kundu, Parikshit & Sarkar, Arunjyoti & Nagarajan, Vishwanath, 2019. "Improvement of performance of S1210 hydrofoil with vortex generators and modified trailing edge," Renewable Energy, Elsevier, vol. 142(C), pages 643-657.
    8. Li, Qing'an & Kamada, Yasunari & Maeda, Takao & Murata, Junsuke & Nishida, Yusuke, 2016. "Effect of turbulent inflows on airfoil performance for a Horizontal Axis Wind Turbine at low Reynolds numbers (Part II: Dynamic pressure measurement)," Energy, Elsevier, vol. 112(C), pages 574-587.
    9. Niebuhr, C.M. & Schmidt, S. & van Dijk, M. & Smith, L. & Neary, V.S., 2022. "A review of commercial numerical modelling approaches for axial hydrokinetic turbine wake analysis in channel flow," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    10. Manolesos, M. & Chng, L. & Kaufmann, N. & Ouro, P. & Ntouras, D. & Papadakis, G., 2023. "Using vortex generators for flow separation control on tidal turbine profiles and blades," Renewable Energy, Elsevier, vol. 205(C), pages 1025-1039.
    11. De Tavernier, D. & Ferreira, C. & Viré, A. & LeBlanc, B. & Bernardy, S., 2021. "Controlling dynamic stall using vortex generators on a wind turbine airfoil," Renewable Energy, Elsevier, vol. 172(C), pages 1194-1211.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gambuzza, Stefano & Pisetta, Gabriele & Davey, Thomas & Steynor, Jeffrey & Viola, Ignazio Maria, 2023. "Model-scale experiments of passive pitch control for tidal turbines," Renewable Energy, Elsevier, vol. 205(C), pages 10-29.
    2. Lam, Raymond & Dubon, Sergio Lopez & Sellar, Brian & Vogel, Christopher & Davey, Thomas & Steynor, Jeffrey, 2023. "Temporal and spatial characterisation of tidal blade load variation for structural fatigue testing," Renewable Energy, Elsevier, vol. 208(C), pages 665-678.
    3. Perez, Larissa & Cossu, Remo & Grinham, Alistair & Penesis, Irene, 2021. "Seasonality of turbulence characteristics and wave-current interaction in two prospective tidal energy sites," Renewable Energy, Elsevier, vol. 178(C), pages 1322-1336.
    4. Perez, Larissa & Cossu, Remo & Grinham, Alistair & Penesis, Irene, 2022. "An investigation of tidal turbine performance and loads under various turbulence conditions using Blade Element Momentum theory and high-frequency field data acquired in two prospective tidal energy s," Renewable Energy, Elsevier, vol. 201(P1), pages 928-937.
    5. Perez, Larissa & Cossu, Remo & Grinham, Alistair & Penesis, Irene, 2022. "Tidal turbine performance and loads for various hub heights and wave conditions using high-frequency field measurements and Blade Element Momentum theory," Renewable Energy, Elsevier, vol. 200(C), pages 1548-1560.
    6. Thomas Scarlett, Gabriel & Viola, Ignazio Maria, 2020. "Unsteady hydrodynamics of tidal turbine blades," Renewable Energy, Elsevier, vol. 146(C), pages 843-855.
    7. Xin-Kai Li & Wei Liu & Ting-Jun Zhang & Pei-Ming Wang & Xiao-Dong Wang, 2019. "Experimental and Numerical Analysis of the Effect of Vortex Generator Installation Angle on Flow Separation Control," Energies, MDPI, vol. 12(23), pages 1-19, December.
    8. Li, Qing'an & Xu, Jianzhong & Maeda, Takao & Kamada, Yasunari & Nishimura, Shogo & Wu, Guangxing & Cai, Chang, 2019. "Laser Doppler Velocimetry (LDV) measurements of airfoil surface flow on a Horizontal Axis Wind Turbine in boundary layer," Energy, Elsevier, vol. 183(C), pages 341-357.
    9. Elgammi, Moutaz & Sant, Tonio & Alshaikh, Moftah, 2020. "Predicting the stochastic aerodynamic loads on blades of two yawed downwind hawts in uncontrolled conditions using a bem algorithm," Renewable Energy, Elsevier, vol. 146(C), pages 371-383.
    10. Li, Qing’an & Xu, Jianzhong & Kamada, Yasunari & Takao, Maeda & Nishimura, Shogo & Wu, Guangxing & Cai, Chang, 2020. "Experimental investigations of airfoil surface flow of a horizontal axis wind turbine with LDV measurements," Energy, Elsevier, vol. 191(C).
    11. Guoqiang, Li & Weiguo, Zhang & Yubiao, Jiang & Pengyu, Yang, 2019. "Experimental investigation of dynamic stall flow control for wind turbine airfoils using a plasma actuator," Energy, Elsevier, vol. 185(C), pages 90-101.
    12. Chang, Hong & Li, Deyou & Zhang, Ruiyi & Wang, Hongjie & He, Yurong & Zuo, Zhigang & Liu, Shuhong, 2024. "Effect of discontinuous biomimetic leading-edge protuberances on the performance of vertical axis wind turbines," Applied Energy, Elsevier, vol. 364(C).
    13. Tian, Linlin & Song, Yilei & Wang, Zhenming & Zhao, Ning & Zhu, Chunling & Lu, Xiyun, 2024. "Predictive capability of an improved AD/RANS method for multiple wind turbines and wind farm wakes," Energy, Elsevier, vol. 297(C).
    14. Liu, Qingsong & Miao, Weipao & Ye, Qi & Li, Chun, 2022. "Performance assessment of an innovative Gurney flap for straight-bladed vertical axis wind turbine," Renewable Energy, Elsevier, vol. 185(C), pages 1124-1138.
    15. Le Fouest, Sébastien & Mulleners, Karen, 2022. "The dynamic stall dilemma for vertical-axis wind turbines," Renewable Energy, Elsevier, vol. 198(C), pages 505-520.
    16. Draycott, S. & Sellar, B. & Davey, T. & Noble, D.R. & Venugopal, V. & Ingram, D.M., 2019. "Capture and simulation of the ocean environment for offshore renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 15-29.
    17. Zhang, Sanxia & Luo, Kun & Yuan, Renyu & Wang, Qiang & Wang, Jianwen & Zhang, Liru & Fan, Jianren, 2018. "Influences of operating parameters on the aerodynamics and aeroacoustics of a horizontal-axis wind turbine," Energy, Elsevier, vol. 160(C), pages 597-611.
    18. Mujahid Badshah & Saeed Badshah & James VanZwieten & Sakhi Jan & Muhammad Amir & Suheel Abdullah Malik, 2019. "Coupled Fluid-Structure Interaction Modelling of Loads Variation and Fatigue Life of a Full-Scale Tidal Turbine under the Effect of Velocity Profile," Energies, MDPI, vol. 12(11), pages 1-22, June.
    19. Jiang, Ruifang & Zhao, Zhenzhou & Liu, Huiwen & Wang, Tongguang & Chen, Ming & Feng, Junxin & Wang, Dingding, 2022. "Numerical study on the influence of vortex generators on wind turbine aerodynamic performance considering rotational effect," Renewable Energy, Elsevier, vol. 186(C), pages 730-741.
    20. Young, Anna M. & Benson, Ian A. & Kregting, Louise, 2023. "The Barnacle: A low-cost marine turbulence sensor," Renewable Energy, Elsevier, vol. 217(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:224:y:2024:i:c:s0960148124001812. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.