IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v97y2016icp47-64.html
   My bibliography  Save this article

Dynamic stall control via adaptive blowing

Author

Listed:
  • Müller-Vahl, Hanns Friedrich
  • Nayeri, Christian Navid
  • Paschereit, Christian Oliver
  • Greenblatt, David

Abstract

An aerodynamic load control concept termed “adaptive blowing” was successfully tested on a NACA 0018 airfoil model at Reynolds numbers ranging from 1.5·105 to 5·105. The global objective was to eliminate lift oscillations typically encountered on wind turbine blade sections. Depending on the jet momentum flux, steady blowing from a control slot in the leading-edge region can be utilized to either enhance or reduce lift by suppressing or inducing boundary layer separation respectively. Furthermore, high momentum blowing effectively eliminated the dynamic stall vortex during deep dynamic stall conditions. Based on these previous findings, the present work explores the feasibility of controlling unsteady aerodynamic loads by dynamically varying the jet momentum flux to compensate for transient changes of the inflow. Various scenarios including high amplitude pitching, rapid freestream oscillations and combinations of both were investigated in a custom-built unsteady wind tunnel facility. An iterative control algorithm was implemented which successfully identified the momentum coefficient time profiles required to minimize the lift excursions. The combination of fully suppressing dynamic stall and dynamically adjusting the lift coefficient provided an unprecedented control authority, producing virtually constant phase averaged lift in all cases.

Suggested Citation

  • Müller-Vahl, Hanns Friedrich & Nayeri, Christian Navid & Paschereit, Christian Oliver & Greenblatt, David, 2016. "Dynamic stall control via adaptive blowing," Renewable Energy, Elsevier, vol. 97(C), pages 47-64.
  • Handle: RePEc:eee:renene:v:97:y:2016:i:c:p:47-64
    DOI: 10.1016/j.renene.2016.05.053
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148116304633
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2016.05.053?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Iván Herráez & Bernhard Stoevesandt & Joachim Peinke, 2014. "Insight into Rotational Effects on a Wind Turbine Blade Using Navier–Stokes Computations," Energies, MDPI, vol. 7(10), pages 1-25, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhu, Chengyong & Qiu, Yingning & Wang, Tongguang, 2021. "Dynamic stall of the wind turbine airfoil and blade undergoing pitch oscillations: A comparative study," Energy, Elsevier, vol. 222(C).
    2. Müller-Vahl, Hanns Friedrich & Pechlivanoglou, Georgios & Nayeri, Christian Navid & Paschereit, Christian Oliver & Greenblatt, David, 2017. "Matched pitch rate extensions to dynamic stall on rotor blades," Renewable Energy, Elsevier, vol. 105(C), pages 505-519.
    3. Fatehi, Mostafa & Nili-Ahmadabadi, Mahdi & Nematollahi, Omid & Minaiean, Ali & Kim, Kyung Chun, 2019. "Aerodynamic performance improvement of wind turbine blade by cavity shape optimization," Renewable Energy, Elsevier, vol. 132(C), pages 773-785.
    4. Zhu, Chengyong & Feng, Yi & Shen, Xiang & Dang, Zhigao & Chen, Jie & Qiu, Yingning & Feng, Yanhui & Wang, Tongguang, 2023. "Effects of the height and chordwise installation of the vane-type vortex generators on the unsteady aerodynamics of a wind turbine airfoil undergoing dynamic stall," Energy, Elsevier, vol. 266(C).
    5. Stefan Hoerner & Iring Kösters & Laure Vignal & Olivier Cleynen & Shokoofeh Abbaszadeh & Thierry Maître & Dominique Thévenin, 2021. "Cross-Flow Tidal Turbines with Highly Flexible Blades—Experimental Flow Field Investigations at Strong Fluid–Structure Interactions," Energies, MDPI, vol. 14(4), pages 1-17, February.
    6. Garzozi, Anan & Greenblatt, David, 2023. "Wind energy generation by forced vortex shedding," Applied Energy, Elsevier, vol. 349(C).
    7. De Tavernier, D. & Ferreira, C. & Viré, A. & LeBlanc, B. & Bernardy, S., 2021. "Controlling dynamic stall using vortex generators on a wind turbine airfoil," Renewable Energy, Elsevier, vol. 172(C), pages 1194-1211.
    8. Zhu, Chengyong & Chen, Jie & Wu, Jianghai & Wang, Tongguang, 2019. "Dynamic stall control of the wind turbine airfoil via single-row and double-row passive vortex generators," Energy, Elsevier, vol. 189(C).
    9. Mohammadi, Morteza & Maghrebi, Mohammad Javad, 2021. "Improvement of wind turbine aerodynamic performance by vanquishing stall with active multi air jet blowing," Energy, Elsevier, vol. 224(C).
    10. Md Zishan Akhter & Farag Khalifa Omar, 2021. "Review of Flow-Control Devices for Wind-Turbine Performance Enhancement," Energies, MDPI, vol. 14(5), pages 1-35, February.
    11. Velasco, D. & López Mejia, O. & Laín, S., 2017. "Numerical simulations of active flow control with synthetic jets in a Darrieus turbine," Renewable Energy, Elsevier, vol. 113(C), pages 129-140.
    12. Liu, Jian & Zhu, Wenqing & Xiao, Zhixiang & Sun, Haisheng & Huang, Yong & Liu, Zhitao, 2018. "DDES with adaptive coefficient for stalled flows past a wind turbine airfoil," Energy, Elsevier, vol. 161(C), pages 846-858.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mauro, S. & Lanzafame, R. & Messina, M. & Brusca, S., 2023. "On the importance of the root-to-hub adapter effects on HAWT performance: A CFD-BEM numerical investigation," Energy, Elsevier, vol. 275(C).
    2. J. G. Schepers & S. J. Schreck, 2019. "Aerodynamic measurements on wind turbines," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 8(1), January.
    3. Abutunis, Abdulaziz & Hussein, Rafid & Chandrashekhara, K., 2019. "A neural network approach to enhance blade element momentum theory performance for horizontal axis hydrokinetic turbine application," Renewable Energy, Elsevier, vol. 136(C), pages 1281-1293.
    4. Amini, Shayesteh & Golzarian, Mahmood Reza & Mahmoodi, Esmail & Jeromin, Andres & Abbaspour-Fard, Mohammad Hossein, 2021. "Numerical simulation of the Mexico wind turbine using the actuator disk model along with the 3D correction of aerodynamic coefficients in OpenFOAM," Renewable Energy, Elsevier, vol. 163(C), pages 2029-2036.
    5. Sun, Zhenye & Chen, Jin & Shen, Wen Zhong & Zhu, Wei Jun, 2016. "Improved blade element momentum theory for wind turbine aerodynamic computations," Renewable Energy, Elsevier, vol. 96(PA), pages 824-831.
    6. Shantanu Purohit & Ijaz Fazil Syed Ahmed Kabir & E. Y. K. Ng, 2021. "On the Accuracy of uRANS and LES-Based CFD Modeling Approaches for Rotor and Wake Aerodynamics of the (New) MEXICO Wind Turbine Rotor Phase-III," Energies, MDPI, vol. 14(16), pages 1-26, August.
    7. Abutunis, A. & Taylor, G. & Fal, M. & Chandrashekhara, K., 2020. "Experimental evaluation of coaxial horizontal axis hydrokinetic composite turbine system," Renewable Energy, Elsevier, vol. 157(C), pages 232-245.
    8. Kiran Siddappaji & Mark Turner, 2022. "Improved Prediction of Aerodynamic Loss Propagation as Entropy Rise in Wind Turbines Using Multifidelity Analysis," Energies, MDPI, vol. 15(11), pages 1-44, May.
    9. Matthias Schramm & Hamid Rahimi & Bernhard Stoevesandt & Kim Tangager, 2017. "The Influence of Eroded Blades on Wind Turbine Performance Using Numerical Simulations," Energies, MDPI, vol. 10(9), pages 1-15, September.
    10. Dose, B. & Rahimi, H. & Herráez, I. & Stoevesandt, B. & Peinke, J., 2018. "Fluid-structure coupled computations of the NREL 5 MW wind turbine by means of CFD," Renewable Energy, Elsevier, vol. 129(PA), pages 591-605.
    11. Abdulaziz Abutunis & Venkata Gireesh Menta, 2022. "Comprehensive Parametric Study of Blockage Effect on the Performance of Horizontal Axis Hydrokinetic Turbines," Energies, MDPI, vol. 15(7), pages 1-22, April.
    12. Zhong, Junwei & Li, Jingyin, 2020. "Aerodynamic performance prediction of NREL phase VI blade adopting biplane airfoil," Energy, Elsevier, vol. 206(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:97:y:2016:i:c:p:47-64. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.