IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v105y2017icp505-519.html
   My bibliography  Save this article

Matched pitch rate extensions to dynamic stall on rotor blades

Author

Listed:
  • Müller-Vahl, Hanns Friedrich
  • Pechlivanoglou, Georgios
  • Nayeri, Christian Navid
  • Paschereit, Christian Oliver
  • Greenblatt, David

Abstract

Dynamic stall on both horizontal axis and vertical axis wind turbine blades is accompanied by simultaneous changes in pitch and surge, but this simultaneous effect has never been documented. Using a unique unsteady wind tunnel, synchronous oscillations in angle of attack and flow speed were considered on two prototypical wind turbine blades. At a steady freestream, the concept of matched pitch rate was observed to be valid for large positive and negative pitch angles. In the presence of an unsteady stream, matching the flow speed as well as the pitch angle and its time derivative during pitch-up produced excellent correspondence between lift, drag and moment coefficients throughout the entire dynamic stall event.

Suggested Citation

  • Müller-Vahl, Hanns Friedrich & Pechlivanoglou, Georgios & Nayeri, Christian Navid & Paschereit, Christian Oliver & Greenblatt, David, 2017. "Matched pitch rate extensions to dynamic stall on rotor blades," Renewable Energy, Elsevier, vol. 105(C), pages 505-519.
  • Handle: RePEc:eee:renene:v:105:y:2017:i:c:p:505-519
    DOI: 10.1016/j.renene.2016.12.070
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148116311302
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2016.12.070?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. He-Yong Xu & Chen-Liang Qiao & Zheng-Yin Ye, 2016. "Dynamic Stall Control on the Wind Turbine Airfoil via a Co-Flow Jet," Energies, MDPI, vol. 9(6), pages 1-25, June.
    2. Müller-Vahl, Hanns Friedrich & Nayeri, Christian Navid & Paschereit, Christian Oliver & Greenblatt, David, 2016. "Dynamic stall control via adaptive blowing," Renewable Energy, Elsevier, vol. 97(C), pages 47-64.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Keisar, David & Arava, Idan & Greenblatt, David, 2024. "Dynamic-stall-driven vertical axis wind turbine: An experimental parametric study," Applied Energy, Elsevier, vol. 365(C).
    2. Rezaeiha, Abdolrahim & Pereira, Ricardo & Kotsonis, Marios, 2017. "Fluctuations of angle of attack and lift coefficient and the resultant fatigue loads for a large Horizontal Axis Wind turbine," Renewable Energy, Elsevier, vol. 114(PB), pages 904-916.
    3. Liu, Jian & Zhu, Wenqing & Xiao, Zhixiang & Sun, Haisheng & Huang, Yong & Liu, Zhitao, 2018. "DDES with adaptive coefficient for stalled flows past a wind turbine airfoil," Energy, Elsevier, vol. 161(C), pages 846-858.
    4. Rezaeiha, Abdolrahim & Montazeri, Hamid & Blocken, Bert, 2019. "On the accuracy of turbulence models for CFD simulations of vertical axis wind turbines," Energy, Elsevier, vol. 180(C), pages 838-857.
    5. Rezaeiha, Abdolrahim & Montazeri, Hamid & Blocken, Bert, 2018. "Towards optimal aerodynamic design of vertical axis wind turbines: Impact of solidity and number of blades," Energy, Elsevier, vol. 165(PB), pages 1129-1148.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Jian & Zhu, Wenqing & Xiao, Zhixiang & Sun, Haisheng & Huang, Yong & Liu, Zhitao, 2018. "DDES with adaptive coefficient for stalled flows past a wind turbine airfoil," Energy, Elsevier, vol. 161(C), pages 846-858.
    2. Velasco, D. & López Mejia, O. & Laín, S., 2017. "Numerical simulations of active flow control with synthetic jets in a Darrieus turbine," Renewable Energy, Elsevier, vol. 113(C), pages 129-140.
    3. Fatehi, Mostafa & Nili-Ahmadabadi, Mahdi & Nematollahi, Omid & Minaiean, Ali & Kim, Kyung Chun, 2019. "Aerodynamic performance improvement of wind turbine blade by cavity shape optimization," Renewable Energy, Elsevier, vol. 132(C), pages 773-785.
    4. Zhu, Chengyong & Qiu, Yingning & Wang, Tongguang, 2021. "Dynamic stall of the wind turbine airfoil and blade undergoing pitch oscillations: A comparative study," Energy, Elsevier, vol. 222(C).
    5. Zhu, Chengyong & Chen, Jie & Wu, Jianghai & Wang, Tongguang, 2019. "Dynamic stall control of the wind turbine airfoil via single-row and double-row passive vortex generators," Energy, Elsevier, vol. 189(C).
    6. De Tavernier, D. & Ferreira, C. & Viré, A. & LeBlanc, B. & Bernardy, S., 2021. "Controlling dynamic stall using vortex generators on a wind turbine airfoil," Renewable Energy, Elsevier, vol. 172(C), pages 1194-1211.
    7. Zhu, Chengyong & Feng, Yi & Shen, Xiang & Dang, Zhigao & Chen, Jie & Qiu, Yingning & Feng, Yanhui & Wang, Tongguang, 2023. "Effects of the height and chordwise installation of the vane-type vortex generators on the unsteady aerodynamics of a wind turbine airfoil undergoing dynamic stall," Energy, Elsevier, vol. 266(C).
    8. Mohammadi, Morteza & Maghrebi, Mohammad Javad, 2021. "Improvement of wind turbine aerodynamic performance by vanquishing stall with active multi air jet blowing," Energy, Elsevier, vol. 224(C).
    9. Md Zishan Akhter & Farag Khalifa Omar, 2021. "Review of Flow-Control Devices for Wind-Turbine Performance Enhancement," Energies, MDPI, vol. 14(5), pages 1-35, February.
    10. Xu, He-Yong & Qiao, Chen-Liang & Yang, Hui-Qiang & Ye, Zheng-Yin, 2017. "Delayed detached eddy simulation of the wind turbine airfoil S809 for angles of attack up to 90 degrees," Energy, Elsevier, vol. 118(C), pages 1090-1109.
    11. Sun, Jinjing & Sun, Xiaojing & Huang, Diangui, 2020. "Aerodynamics of vertical-axis wind turbine with boundary layer suction – Effects of suction momentum," Energy, Elsevier, vol. 209(C).
    12. Sedaghat, Ahmad & Hassanzadeh, Arash & Jamali, Jamaloddin & Mostafaeipour, Ali & Chen, Wei-Hsin, 2017. "Determination of rated wind speed for maximum annual energy production of variable speed wind turbines," Applied Energy, Elsevier, vol. 205(C), pages 781-789.
    13. Stefan Hoerner & Iring Kösters & Laure Vignal & Olivier Cleynen & Shokoofeh Abbaszadeh & Thierry Maître & Dominique Thévenin, 2021. "Cross-Flow Tidal Turbines with Highly Flexible Blades—Experimental Flow Field Investigations at Strong Fluid–Structure Interactions," Energies, MDPI, vol. 14(4), pages 1-17, February.
    14. Unai Fernandez-Gamiz & Ekaitz Zulueta & Ana Boyano & Igor Ansoategui & Irantzu Uriarte, 2017. "Five Megawatt Wind Turbine Power Output Improvements by Passive Flow Control Devices," Energies, MDPI, vol. 10(6), pages 1-15, May.
    15. Chengyong Zhu & Tongguang Wang & Jie Chen & Wei Zhong, 2020. "Effect of Single-Row and Double-Row Passive Vortex Generators on the Deep Dynamic Stall of a Wind Turbine Airfoil," Energies, MDPI, vol. 13(10), pages 1-13, May.
    16. Guoqiang, Li & Shihe, Yi, 2020. "Large eddy simulation of dynamic stall flow control for wind turbine airfoil using plasma actuator," Energy, Elsevier, vol. 212(C).
    17. Shunlei Zhang & Xudong Yang & Bifeng Song, 2021. "Numerical Investigation of Performance Enhancement of the S809 Airfoil and Phase VI Wind Turbine Blade Using Co-Flow Jet Technology," Energies, MDPI, vol. 14(21), pages 1-20, October.
    18. He-Yong Xu & Qing-Li Dong & Chen-Liang Qiao & Zheng-Yin Ye, 2018. "Flow Control over the Blunt Trailing Edge of Wind Turbine Airfoils Using Circulation Control," Energies, MDPI, vol. 11(3), pages 1-26, March.
    19. Sun, Yukun & Qian, Yaoru & Gao, Yang & Wang, Tongguang & Wang, Long, 2024. "Stall control on the wind turbine airfoil via the single and dual-channel of combining bowing and suction technique," Energy, Elsevier, vol. 290(C).
    20. Taurista P. Syawitri & Yufeng Yao & Jun Yao & Budi Chandra, 2022. "A review on the use of passive flow control devices as performance enhancement of lift‐type vertical axis wind turbines," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 11(4), July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:105:y:2017:i:c:p:505-519. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.