IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v171y2021icp647-657.html
   My bibliography  Save this article

Yeast-based biodiesel production using sulfonated carbon-based solid acid catalyst by an integrated biorefinery of durian peel waste

Author

Listed:
  • Leesing, Ratanaporn
  • Siwina, Siraprapha
  • Fiala, Khanittha

Abstract

An integrated biorefinery concept for yeast-based biodiesel production using durian peel (DP) as a feedstock was developed. After dilute acid hydrolysis, DP hydrolysate (DPH) and DP solid fraction (DPSF) hydrolysis residues were generated. Yeast lipid was produced from undetoxified DPH by Rhodotorula mucilaginosa KKUSY14. DPSF was subjected to a one-step sulfonation process to prepare a solid catalyst (DPSF-SO3H) and was characterized using FTIR, XRD, and FE-SEM analysis. DPSF-SO3H catalyst exhibited good catalytic activity for yeast-based biodiesel (FAME) production from wet cell of KKUSY14 grown in DPH by direct transesterification. FAME yields of 81.57% and 78.73% were reached, respectively, for microwave and conventional heating. The fuel properties of FAME were in accordance with the ASTM and EN standards. Based on the higher heating value of FAME produced, an energy output of about 32.44–34.90 MJ/kg was estimated. The proposed bio-refinery concept led to the production of 101.2 kg yeast biomass, 16.0 kg yeast lipid, 717 kg DPSF-SO3H catalyst, 79.7–82.6 kg FAME, and 70.4 kg yeast residues from 1000 kg of DP waste. This model clearly provides economic benefits by creating value-added products and eliminating any waste streams.

Suggested Citation

  • Leesing, Ratanaporn & Siwina, Siraprapha & Fiala, Khanittha, 2021. "Yeast-based biodiesel production using sulfonated carbon-based solid acid catalyst by an integrated biorefinery of durian peel waste," Renewable Energy, Elsevier, vol. 171(C), pages 647-657.
  • Handle: RePEc:eee:renene:v:171:y:2021:i:c:p:647-657
    DOI: 10.1016/j.renene.2021.02.146
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121003256
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.02.146?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gohain, Minakshi & Laskar, Khairujjaman & Paul, Atanu Kumar & Daimary, Niran & Maharana, Mrutyunjay & Goswami, Imon Kalyan & Hazarika, Anil & Bora, Utpal & Deka, Dhanapati, 2020. "Carica papaya stem: A source of versatile heterogeneous catalyst for biodiesel production and C–C bond formation," Renewable Energy, Elsevier, vol. 147(P1), pages 541-555.
    2. Zhang, Bingxin & Gao, Ming & Geng, Jiayu & Cheng, Yuwei & Wang, Xiaona & Wu, Chuanfu & Wang, Qunhui & Liu, Shu & Cheung, Siu Ming, 2021. "Catalytic performance and deactivation mechanism of a one-step sulfonated carbon-based solid-acid catalyst in an esterification reaction," Renewable Energy, Elsevier, vol. 164(C), pages 824-832.
    3. Malhotra, Rashi & Ali, Amjad, 2019. "5-Na/ZnO doped mesoporous silica as reusable solid catalyst for biodiesel production via transesterification of virgin cottonseed oil," Renewable Energy, Elsevier, vol. 133(C), pages 606-619.
    4. Akinfalabi, Shehu-Ibrahim & Rashid, Umer & Yunus, Robiah & Taufiq-Yap, Yun Hin, 2017. "Synthesis of biodiesel from palm fatty acid distillate using sulfonated palm seed cake catalyst," Renewable Energy, Elsevier, vol. 111(C), pages 611-619.
    5. Mendaros, Czarina M. & Go, Alchris W. & Nietes, Winston Jose T. & Gollem, Babe Eden Joy O. & Cabatingan, Luis K., 2020. "Direct sulfonation of cacao shell to synthesize a solid acid catalyst for the esterification of oleic acid with methanol," Renewable Energy, Elsevier, vol. 152(C), pages 320-330.
    6. Siwina, Siraprapha & Leesing, Ratanaporn, 2021. "Bioconversion of durian (Durio zibethinus Murr.) peel hydrolysate into biodiesel by newly isolated oleaginous yeast Rhodotorula mucilaginosa KKUSY14," Renewable Energy, Elsevier, vol. 163(C), pages 237-245.
    7. Esakkimuthu, Sivakumar & Krishnamurthy, Venkatesan & Wang, Shuang & Hu, Xun & K, Swaminathan & Abomohra, Abd El-Fatah, 2020. "Application of p-coumaric acid for extraordinary lipid production in Tetradesmus obliquus: A sustainable approach towards enhanced biodiesel production," Renewable Energy, Elsevier, vol. 157(C), pages 368-376.
    8. Eevera, T. & Rajendran, K. & Saradha, S., 2009. "Biodiesel production process optimization and characterization to assess the suitability of the product for varied environmental conditions," Renewable Energy, Elsevier, vol. 34(3), pages 762-765.
    9. Sandouqa, Arwa & Al-Hamamre, Zayed & Asfar, Jamil, 2019. "Preparation and performance investigation of a lignin-based solid acid catalyst manufactured from olive cake for biodiesel production," Renewable Energy, Elsevier, vol. 132(C), pages 667-682.
    10. Farooq, Muhammad & Ramli, Anita & Naeem, Abdul, 2015. "Biodiesel production from low FFA waste cooking oil using heterogeneous catalyst derived from chicken bones," Renewable Energy, Elsevier, vol. 76(C), pages 362-368.
    11. Patel, Alok & Arora, Neha & Sartaj, Km & Pruthi, Vikas & Pruthi, Parul A., 2016. "Sustainable biodiesel production from oleaginous yeasts utilizing hydrolysates of various non-edible lignocellulosic biomasses," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 836-855.
    12. Meher, L.C. & Vidya Sagar, D. & Naik, S.N., 2006. "Technical aspects of biodiesel production by transesterification--a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 10(3), pages 248-268, June.
    13. Deeba, Farha & Kumar, Bijender & Arora, Neha & Singh, Sauraj & Kumar, Anuj & Han, Sung Soo & Negi, Yuvraj S., 2020. "Novel bio-based solid acid catalyst derived from waste yeast residue for biodiesel production," Renewable Energy, Elsevier, vol. 159(C), pages 127-139.
    14. Nayak, Sheetal N. & Bhasin, Chandra Prakash & Nayak, Milap G., 2019. "A review on microwave-assisted transesterification processes using various catalytic and non-catalytic systems," Renewable Energy, Elsevier, vol. 143(C), pages 1366-1387.
    15. Tang, Zo-Ee & Lim, Steven & Pang, Yean-Ling & Shuit, Siew-Hoong & Ong, Hwai-Chyuan, 2020. "Utilisation of biomass wastes based activated carbon supported heterogeneous acid catalyst for biodiesel production," Renewable Energy, Elsevier, vol. 158(C), pages 91-102.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Leesing, Ratanaporn & Somdee, Theerasak & Siwina, Siraprapha & Ngernyen, Yuvarat & Fiala, Khanittha, 2022. "Production of 2G and 3G biodiesel, yeast oil, and sulfonated carbon catalyst from waste coconut meal: An integrated cascade biorefinery approach," Renewable Energy, Elsevier, vol. 199(C), pages 1093-1104.
    2. Nie, Yifan & Hou, Qidong & Qian, Hengli & Bai, Xinyu & Xia, Tianliang & Lai, Ruite & Yu, Guanjie & Rehman, Mian Laiq Ur & Ju, Meiting, 2022. "Synthesis of mesoporous sulfonated carbon from chicken bones to boost rapid conversion of 5-hydroxymethylfurfural and carbohydrates to 5-ethoxymethylfurfural," Renewable Energy, Elsevier, vol. 192(C), pages 279-288.
    3. Leesing, Ratanaporn & Siwina, Siraprapha & Ngernyen, Yuvarat & Fiala, Khanittha, 2022. "Innovative approach for co-production of single cell oil (SCO), novel carbon-based solid acid catalyst and SCO-based biodiesel from fallen Dipterocarpus alatus leaves," Renewable Energy, Elsevier, vol. 185(C), pages 47-60.
    4. Sun, Chihe & Hu, Yun & Sun, Fubao & Sun, Yahui & Song, Guojie & Chang, Haixing & Lunprom, Siriporn, 2022. "Comparison of biodiesel production using a novel porous Zn/Al/Co complex oxide prepared from different methods: Physicochemical properties, reaction kinetic and thermodynamic studies," Renewable Energy, Elsevier, vol. 181(C), pages 1419-1430.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Leesing, Ratanaporn & Siwina, Siraprapha & Ngernyen, Yuvarat & Fiala, Khanittha, 2022. "Innovative approach for co-production of single cell oil (SCO), novel carbon-based solid acid catalyst and SCO-based biodiesel from fallen Dipterocarpus alatus leaves," Renewable Energy, Elsevier, vol. 185(C), pages 47-60.
    2. Leesing, Ratanaporn & Somdee, Theerasak & Siwina, Siraprapha & Ngernyen, Yuvarat & Fiala, Khanittha, 2022. "Production of 2G and 3G biodiesel, yeast oil, and sulfonated carbon catalyst from waste coconut meal: An integrated cascade biorefinery approach," Renewable Energy, Elsevier, vol. 199(C), pages 1093-1104.
    3. Zhang, Bingxin & Gao, Ming & Tang, Weiqi & Wang, Xiaona & Wu, Chuanfu & Wang, Qunhui & Cheung, Siu Ming & Chen, Xiankun, 2023. "Esterification efficiency improvement of carbon-based solid acid catalysts induced by biomass pretreatments: Intrinsic mechanism," Energy, Elsevier, vol. 263(PB).
    4. Helmi, Fatemeh & Helmi, Maryam & Hemmati, Alireza, 2022. "Phosphomolybdic acid/chitosan as acid solid catalyst using for biodiesel production from pomegranate seed oil via microwave heating system: RSM optimization and kinetic study," Renewable Energy, Elsevier, vol. 189(C), pages 881-898.
    5. Yu, Hewei & Cao, Yunlong & Li, Heyao & Zhao, Gaiju & Zhang, Xingyu & Cheng, Shen & Wei, Wei, 2021. "An efficient heterogeneous acid catalyst derived from waste ginger straw for biodiesel production," Renewable Energy, Elsevier, vol. 176(C), pages 533-542.
    6. Alaei, Shervin & Haghighi, Mohammad & Rahmanivahid, Behgam & Shokrani, Reza & Naghavi, Hossein, 2020. "Conventional vs. hybrid methods for dispersion of MgO over magnetic Mg–Fe mixed oxides nanocatalyst in biofuel production from vegetable oil," Renewable Energy, Elsevier, vol. 154(C), pages 1188-1203.
    7. Zhang, Bingxin & Gao, Ming & Tang, Weiqi & Wang, Xiaona & Wu, Chuanfu & Wang, Qunhui & Xie, Haijiao, 2023. "Reduced surface sulphonic acid concentration Alleviates carbon-based solid acid catalysts deactivation in biodiesel production," Energy, Elsevier, vol. 271(C).
    8. Gualberto Zavarize, Danilo & Braun, Heder & Diniz de Oliveira, Jorge, 2021. "Methanolysis of low-FFA waste cooking oil with novel carbon-based heterogeneous acid catalyst derived from Amazon açaí berry seeds," Renewable Energy, Elsevier, vol. 171(C), pages 621-634.
    9. Siwina, Siraprapha & Leesing, Ratanaporn, 2021. "Bioconversion of durian (Durio zibethinus Murr.) peel hydrolysate into biodiesel by newly isolated oleaginous yeast Rhodotorula mucilaginosa KKUSY14," Renewable Energy, Elsevier, vol. 163(C), pages 237-245.
    10. Ching-Velasquez, Jonny & Fernández-Lafuente, Roberto & Rodrigues, Rafael C. & Plata, Vladimir & Rosales-Quintero, Arnulfo & Torrestiana-Sánchez, Beatriz & Tacias-Pascacio, Veymar G., 2020. "Production and characterization of biodiesel from oil of fish waste by enzymatic catalysis," Renewable Energy, Elsevier, vol. 153(C), pages 1346-1354.
    11. Tang, Ying & Meng, Mei & Zhang, Jie & Lu, Yong, 2011. "Efficient preparation of biodiesel from rapeseed oil over modified CaO," Applied Energy, Elsevier, vol. 88(8), pages 2735-2739, August.
    12. Caporusso, Antonio & De Bari, Isabella & Liuzzi, Federico & Albergo, Roberto & Valerio, Vito & Viola, Egidio & Pietrafesa, Rocchina & Siesto, Gabriella & Capece, Angela, 2023. "Optimized conversion of wheat straw into single cell oils by Yarrowia lipolytica and Lipomyces tetrasporus and synthesis of advanced biofuels," Renewable Energy, Elsevier, vol. 202(C), pages 184-195.
    13. Hashemzadeh Gargari, M. & Sadrameli, S.M., 2018. "Investigating continuous biodiesel production from linseed oil in the presence of a Co-solvent and a heterogeneous based catalyst in a packed bed reactor," Energy, Elsevier, vol. 148(C), pages 888-895.
    14. Tariq, Muhammad & Ali, Saqib & Khalid, Nasir, 2012. "Activity of homogeneous and heterogeneous catalysts, spectroscopic and chromatographic characterization of biodiesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 6303-6316.
    15. Aksoy, Laçine, 2011. "Opium poppy (Papaver somniferum L.) oil for preparation of biodiesel: Optimization of conditions," Applied Energy, Elsevier, vol. 88(12), pages 4713-4718.
    16. Singh, Bhaskar & Guldhe, Abhishek & Rawat, Ismail & Bux, Faizal, 2014. "Towards a sustainable approach for development of biodiesel from plant and microalgae," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 216-245.
    17. Chuengcharoenphanich, Nuttha & Watsuntorn, Wannapawn & Qi, Wei & Wang, Zhongming & Hu, Yunzi & Chulalaksananukul, Warawut, 2023. "The potential of biodiesel production from grasses in Thailand through consolidated bioprocessing using a cellulolytic oleaginous yeast, Cyberlindnera rhodanensis CU-CV7," Energy, Elsevier, vol. 263(PB).
    18. Daimary, Niran & Boruah, Pankaj & Eldiehy, Khalifa S.H. & Pegu, Tapan & Bardhan, Pritam & Bora, Utpal & Mandal, Manabendra & Deka, Dhanapati, 2022. "Musa acuminata peel: A bioresource for bio-oil and by-product utilization as a sustainable source of renewable green catalyst for biodiesel production," Renewable Energy, Elsevier, vol. 187(C), pages 450-462.
    19. Kim, Tae-Hyoung & Lee, Kyungho & Oh, Baek-Rock & Lee, Mi-Eun & Seo, Minji & Li, Sheng & Kim, Jae-Kon & Choi, Minkee & Chang, Yong Keun, 2021. "A novel process for the coproduction of biojet fuel and high-value polyunsaturated fatty acid esters from heterotrophic microalgae Schizochytrium sp. ABC101," Renewable Energy, Elsevier, vol. 165(P1), pages 481-490.
    20. Khairul Azly Zahan & Manabu Kano, 2018. "Biodiesel Production from Palm Oil, Its By-Products, and Mill Effluent: A Review," Energies, MDPI, vol. 11(8), pages 1-25, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:171:y:2021:i:c:p:647-657. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.