IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v263y2023ipbs0360544222024926.html
   My bibliography  Save this article

Esterification efficiency improvement of carbon-based solid acid catalysts induced by biomass pretreatments: Intrinsic mechanism

Author

Listed:
  • Zhang, Bingxin
  • Gao, Ming
  • Tang, Weiqi
  • Wang, Xiaona
  • Wu, Chuanfu
  • Wang, Qunhui
  • Cheung, Siu Ming
  • Chen, Xiankun

Abstract

Effect of various reagents (i.e. H2O2, H2SO4, H3PO4 and their mixtures) pretreatments on esterification activities of carbon-based solid acid catalysts synthesised by one-step sulphonation (150 °C for 4 h) was investigated. The results demonstrated that sulphonic acid density of catalyst positively correlated with the esterification efficiency and the high lignin content of the biomass stimulated the loading of sulphonic acid groups. The bamboo powder pretreated with 1% H2SO4 yielded the highest lignin content (from 26.4% to 33.0%). The corresponding catalyst yielded the highest esterification efficiency (97.3%), which decreased to 82.9% after four cycles. On the other hand, the bamboo powder pretreated by H2O2 and 30% H3PO4 brought little effect on the increment of lignin content and esterification efficiency of the catalysts. Therefore, biomass pretreatment could be a solution of disposal acidic wastewater (like catalyst sulphonation wastewater) by reusing it as pretreatment reagents and improving the esterification efficiency of the catalysts.

Suggested Citation

  • Zhang, Bingxin & Gao, Ming & Tang, Weiqi & Wang, Xiaona & Wu, Chuanfu & Wang, Qunhui & Cheung, Siu Ming & Chen, Xiankun, 2023. "Esterification efficiency improvement of carbon-based solid acid catalysts induced by biomass pretreatments: Intrinsic mechanism," Energy, Elsevier, vol. 263(PB).
  • Handle: RePEc:eee:energy:v:263:y:2023:i:pb:s0360544222024926
    DOI: 10.1016/j.energy.2022.125606
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222024926
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.125606?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Flores, Ken P. & Omega, Jan Laurence O. & Cabatingan, Luis K. & Go, Alchris W. & Agapay, Ramelito C. & Ju, Yi-Hsu, 2019. "Simultaneously carbonized and sulfonated sugarcane bagasse as solid acid catalyst for the esterification of oleic acid with methanol," Renewable Energy, Elsevier, vol. 130(C), pages 510-523.
    2. Zhang, Bingxin & Gao, Ming & Geng, Jiayu & Cheng, Yuwei & Wang, Xiaona & Wu, Chuanfu & Wang, Qunhui & Liu, Shu & Cheung, Siu Ming, 2021. "Catalytic performance and deactivation mechanism of a one-step sulfonated carbon-based solid-acid catalyst in an esterification reaction," Renewable Energy, Elsevier, vol. 164(C), pages 824-832.
    3. Guo, Feng & Xiu, Zhi-Long & Liang, Zhi-Xia, 2012. "Synthesis of biodiesel from acidified soybean soapstock using a lignin-derived carbonaceous catalyst," Applied Energy, Elsevier, vol. 98(C), pages 47-52.
    4. Sandouqa, Arwa & Al-Hamamre, Zayed & Asfar, Jamil, 2019. "Preparation and performance investigation of a lignin-based solid acid catalyst manufactured from olive cake for biodiesel production," Renewable Energy, Elsevier, vol. 132(C), pages 667-682.
    5. Dechakhumwat, Suppasate & Hongmanorom, Plaifa & Thunyaratchatanon, Chachchaya & Smith, Siwaporn Meejoo & Boonyuen, Supakorn & Luengnaruemitchai, Apanee, 2020. "Catalytic activity of heterogeneous acid catalysts derived from corncob in the esterification of oleic acid with methanol," Renewable Energy, Elsevier, vol. 148(C), pages 897-906.
    6. Lawan, Ibrahim & Garba, Zahraddeen N. & Zhou, Weiming & Zhang, Mingxin & Yuan, Zhanhui, 2020. "Synergies between the microwave reactor and CaO/zeolite catalyst in waste lard biodiesel production," Renewable Energy, Elsevier, vol. 145(C), pages 2550-2560.
    7. Ngaosuwan, Kanokwan & Goodwin, James G. & Prasertdham, Piyasan, 2016. "A green sulfonated carbon-based catalyst derived from coffee residue for esterification," Renewable Energy, Elsevier, vol. 86(C), pages 262-269.
    8. Shu, Qing & Gao, Jixian & Nawaz, Zeeshan & Liao, Yuhui & Wang, Dezheng & Wang, Jinfu, 2010. "Synthesis of biodiesel from waste vegetable oil with large amounts of free fatty acids using a carbon-based solid acid catalyst," Applied Energy, Elsevier, vol. 87(8), pages 2589-2596, August.
    9. Mendaros, Czarina M. & Go, Alchris W. & Nietes, Winston Jose T. & Gollem, Babe Eden Joy O. & Cabatingan, Luis K., 2020. "Direct sulfonation of cacao shell to synthesize a solid acid catalyst for the esterification of oleic acid with methanol," Renewable Energy, Elsevier, vol. 152(C), pages 320-330.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Bingxin & Gao, Ming & Tang, Weiqi & Wang, Xiaona & Wu, Chuanfu & Wang, Qunhui & Xie, Haijiao, 2023. "Reduced surface sulphonic acid concentration Alleviates carbon-based solid acid catalysts deactivation in biodiesel production," Energy, Elsevier, vol. 271(C).
    2. Ribeiro, Flaviana C.P. & Santos, Jamily L. & Araujo, Rayanne O. & Santos, Vanuza O. & Chaar, Jamal S. & Tenório, Jorge A.S. & de Souza, Luiz K.C., 2024. "Sustainable catalysts for esterification: Sulfonated carbon spheres from biomass waste using hydrothermal carbonization," Renewable Energy, Elsevier, vol. 220(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Bingxin & Gao, Ming & Geng, Jiayu & Cheng, Yuwei & Wang, Xiaona & Wu, Chuanfu & Wang, Qunhui & Liu, Shu & Cheung, Siu Ming, 2021. "Catalytic performance and deactivation mechanism of a one-step sulfonated carbon-based solid-acid catalyst in an esterification reaction," Renewable Energy, Elsevier, vol. 164(C), pages 824-832.
    2. Yu, Hewei & Cao, Yunlong & Li, Heyao & Zhao, Gaiju & Zhang, Xingyu & Cheng, Shen & Wei, Wei, 2021. "An efficient heterogeneous acid catalyst derived from waste ginger straw for biodiesel production," Renewable Energy, Elsevier, vol. 176(C), pages 533-542.
    3. Zhang, Bingxin & Gao, Ming & Tang, Weiqi & Wang, Xiaona & Wu, Chuanfu & Wang, Qunhui & Xie, Haijiao, 2023. "Reduced surface sulphonic acid concentration Alleviates carbon-based solid acid catalysts deactivation in biodiesel production," Energy, Elsevier, vol. 271(C).
    4. Gualberto Zavarize, Danilo & Braun, Heder & Diniz de Oliveira, Jorge, 2021. "Methanolysis of low-FFA waste cooking oil with novel carbon-based heterogeneous acid catalyst derived from Amazon açaí berry seeds," Renewable Energy, Elsevier, vol. 171(C), pages 621-634.
    5. Leesing, Ratanaporn & Siwina, Siraprapha & Fiala, Khanittha, 2021. "Yeast-based biodiesel production using sulfonated carbon-based solid acid catalyst by an integrated biorefinery of durian peel waste," Renewable Energy, Elsevier, vol. 171(C), pages 647-657.
    6. Yadav, Nidhi & Yadav, Gaurav & Ahmaruzzaman, Md., 2023. "Fabrication of surface-modified dual waste-derived biochar for biodiesel production by microwave-assisted esterification of oleic acid: Optimization, kinetics, and mechanistic studies," Renewable Energy, Elsevier, vol. 218(C).
    7. Leesing, Ratanaporn & Siwina, Siraprapha & Ngernyen, Yuvarat & Fiala, Khanittha, 2022. "Innovative approach for co-production of single cell oil (SCO), novel carbon-based solid acid catalyst and SCO-based biodiesel from fallen Dipterocarpus alatus leaves," Renewable Energy, Elsevier, vol. 185(C), pages 47-60.
    8. Thushari, Indika & Babel, Sandhya & Samart, Chanatip, 2019. "Biodiesel production in an autoclave reactor using waste palm oil and coconut coir husk derived catalyst," Renewable Energy, Elsevier, vol. 134(C), pages 125-134.
    9. Leesing, Ratanaporn & Somdee, Theerasak & Siwina, Siraprapha & Ngernyen, Yuvarat & Fiala, Khanittha, 2022. "Production of 2G and 3G biodiesel, yeast oil, and sulfonated carbon catalyst from waste coconut meal: An integrated cascade biorefinery approach," Renewable Energy, Elsevier, vol. 199(C), pages 1093-1104.
    10. Zailan, Zarifah & Tahir, Muhammad & Jusoh, Mazura & Zakaria, Zaki Yamani, 2021. "A review of sulfonic group bearing porous carbon catalyst for biodiesel production," Renewable Energy, Elsevier, vol. 175(C), pages 430-452.
    11. El yaakouby, Ichraq & Rhrissi, Ilyass & Abouliatim, Youness & Hlaibi, Miloudi & Kamil, Noureddine, 2023. "Moroccan sardine scales as a novel and renewable source of heterogeneous catalyst for biodiesel production using palm fatty acid distillate," Renewable Energy, Elsevier, vol. 217(C).
    12. Mansir, Nasar & Teo, Siow Hwa & Rashid, Umer & Saiman, Mohd Izham & Tan, Yen Ping & Alsultan, G. Abdulkareem & Taufiq-Yap, Yun Hin, 2018. "Modified waste egg shell derived bifunctional catalyst for biodiesel production from high FFA waste cooking oil. A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3645-3655.
    13. Dawodu, Folasegun A. & Ayodele, Olubunmi & Xin, Jiayu & Zhang, Suojiang & Yan, Dongxia, 2014. "Effective conversion of non-edible oil with high free fatty acid into biodiesel by sulphonated carbon catalyst," Applied Energy, Elsevier, vol. 114(C), pages 819-826.
    14. Lani, Nurul Saadiah & Ngadi, Norzita & Haron, Saharudin & Mohammed Inuwa, Ibrahim & Anako Opotu, Lawal, 2024. "The catalytic effect of calcium oxide and magnetite loading on magnetically supported calcium oxide-zeolite catalyst for biodiesel production from used cooking oil," Renewable Energy, Elsevier, vol. 222(C).
    15. Pessoa Junior, Wanison A.G. & Takeno, Mitsuo L. & Nobre, Francisco X. & Barros, Silma de S. & Sá, Ingrity S.C. & Silva, Edson P. & Manzato, Lizandro & Iglauer, Stefan & de Freitas, Flávio A., 2020. "Application of water treatment sludge as a low-cost and eco-friendly catalyst in the biodiesel production via fatty acids esterification: Process optimization," Energy, Elsevier, vol. 213(C).
    16. Dechakhumwat, Suppasate & Hongmanorom, Plaifa & Thunyaratchatanon, Chachchaya & Smith, Siwaporn Meejoo & Boonyuen, Supakorn & Luengnaruemitchai, Apanee, 2020. "Catalytic activity of heterogeneous acid catalysts derived from corncob in the esterification of oleic acid with methanol," Renewable Energy, Elsevier, vol. 148(C), pages 897-906.
    17. Konwar, Lakhya Jyoti & Boro, Jutika & Deka, Dhanapati, 2014. "Review on latest developments in biodiesel production using carbon-based catalysts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 546-564.
    18. Abdullah, Sharifah Hanis Yasmin Sayid & Hanapi, Nur Hanis Mohamad & Azid, Azman & Umar, Roslan & Juahir, Hafizan & Khatoon, Helena & Endut, Azizah, 2017. "A review of biomass-derived heterogeneous catalyst for a sustainable biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1040-1051.
    19. Rokhum, Samuel Lalthazuala & Changmai, Bishwajit & Kress, Thomas & Wheatley, Andrew E.H., 2022. "A one-pot route to tunable sugar-derived sulfonated carbon catalysts for sustainable production of biodiesel by fatty acid esterification," Renewable Energy, Elsevier, vol. 184(C), pages 908-919.
    20. Lokman, Ibrahim M. & Rashid, Umer & Taufiq-Yap, Yun Hin & Yunus, Robiah, 2015. "Methyl ester production from palm fatty acid distillate using sulfonated glucose-derived acid catalyst," Renewable Energy, Elsevier, vol. 81(C), pages 347-354.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:263:y:2023:i:pb:s0360544222024926. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.