IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v111y2017icp611-619.html
   My bibliography  Save this article

Synthesis of biodiesel from palm fatty acid distillate using sulfonated palm seed cake catalyst

Author

Listed:
  • Akinfalabi, Shehu-Ibrahim
  • Rashid, Umer
  • Yunus, Robiah
  • Taufiq-Yap, Yun Hin

Abstract

The use of a sulfonated soaked palm seed cake (SPSC-SO3H) derived catalyst for the production of biodiesel from palm fatty acid distillate (PFAD) (the byproduct obtained during palm oil production) has been demonstrated. The activated carbon material from the soaked palm seed cake (SPSC) was sulfonated and then used for the esterification of PFAD (containing 85% of free fatty acid (FFA), 10% of triglycerides, 3% of diglycerides, 0.3% of monoglycerides and some traces of impurities). The synthesized SPSC-SO3H catalyst was characterized using powder X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET), fourier transform infrared (FTIR) spectroscopy, field emission scanning electron microscope (FESEM), NH3-temperature programmed desorption (NH3-TPD), N2 physisorption and thermogravimetric analysis (TGA). The SPSC-SO3H catalyst showed higher acid density (12.08 mmol g−1) and surface area (483.07 m2 g−1). The optimized reaction conditions, i.e. 9:1 methanol/PFAD molar ratio; 60 °C reaction temperature; 2.5 wt.% of the SPSC-SO3H catalyst and 2 h of reaction time was employed to achieve FFA conversion (98.2%) and FAME yield (97.8%). The SPSC-SO3H catalyst underwent eight reaction cycles and catalytic activity was dropped by 24% during recyclability study. The SPSC-SO3H catalyst demonstrates a promising and effective application for biodiesel synthesis especially for feedstocks containing high free fatty acid content.

Suggested Citation

  • Akinfalabi, Shehu-Ibrahim & Rashid, Umer & Yunus, Robiah & Taufiq-Yap, Yun Hin, 2017. "Synthesis of biodiesel from palm fatty acid distillate using sulfonated palm seed cake catalyst," Renewable Energy, Elsevier, vol. 111(C), pages 611-619.
  • Handle: RePEc:eee:renene:v:111:y:2017:i:c:p:611-619
    DOI: 10.1016/j.renene.2017.04.056
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148117303701
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2017.04.056?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Leesing, Ratanaporn & Somdee, Theerasak & Siwina, Siraprapha & Ngernyen, Yuvarat & Fiala, Khanittha, 2022. "Production of 2G and 3G biodiesel, yeast oil, and sulfonated carbon catalyst from waste coconut meal: An integrated cascade biorefinery approach," Renewable Energy, Elsevier, vol. 199(C), pages 1093-1104.
    2. Essamlali, Younes & Amadine, Othmane & Fihri, Aziz & Zahouily, Mohamed, 2019. "Sodium modified fluorapatite as a sustainable solid bi-functional catalyst for biodiesel production from rapeseed oil," Renewable Energy, Elsevier, vol. 133(C), pages 1295-1307.
    3. Zailan, Zarifah & Tahir, Muhammad & Jusoh, Mazura & Zakaria, Zaki Yamani, 2021. "A review of sulfonic group bearing porous carbon catalyst for biodiesel production," Renewable Energy, Elsevier, vol. 175(C), pages 430-452.
    4. Zhang, Xingyilong & Lu, Houfang & Wu, Kejing & Liu, Yingying & Wu, Jian & Zhu, Yingming & Liang, Bin, 2024. "Synergistic activation of hydroxyl groups by hierarchical acid sites and deep eutectic solvents for the dehydration of fructose to 5-hydroxymethylfurfural under mild temperature," Renewable Energy, Elsevier, vol. 233(C).
    5. Silva, Sónia M. & Peixoto, Andreia F. & Freire, Cristina, 2020. "Organosulfonic acid functionalized montmorillonites as solid catalysts for (trans) esterification of free fatty acids and (waste) oils," Renewable Energy, Elsevier, vol. 146(C), pages 2416-2429.
    6. Leesing, Ratanaporn & Siwina, Siraprapha & Ngernyen, Yuvarat & Fiala, Khanittha, 2022. "Innovative approach for co-production of single cell oil (SCO), novel carbon-based solid acid catalyst and SCO-based biodiesel from fallen Dipterocarpus alatus leaves," Renewable Energy, Elsevier, vol. 185(C), pages 47-60.
    7. Abdullah, Rose Fadzilah & Rashid, Umer & Ibrahim, Mohd Lokman & Hazmi, Balkis & Alharthi, Fahad A. & Nehdi, Imededdine Arbi, 2021. "Bifunctional nano-catalyst produced from palm kernel shell via hydrothermal-assisted carbonization for biodiesel production from waste cooking oil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    8. Yu, Hewei & Cao, Yunlong & Li, Heyao & Zhao, Gaiju & Zhang, Xingyu & Cheng, Shen & Wei, Wei, 2021. "An efficient heterogeneous acid catalyst derived from waste ginger straw for biodiesel production," Renewable Energy, Elsevier, vol. 176(C), pages 533-542.
    9. Sooraj Kumar & Suhail Ahmed Soomro & Khanji Harijan & Mohammad Aslam Uqaili & Laveet Kumar, 2023. "Advancements of Biochar-Based Catalyst for Improved Production of Biodiesel: A Comprehensive Review," Energies, MDPI, vol. 16(2), pages 1-20, January.
    10. Khairul Azly Zahan & Manabu Kano, 2018. "Biodiesel Production from Palm Oil, Its By-Products, and Mill Effluent: A Review," Energies, MDPI, vol. 11(8), pages 1-25, August.
    11. Thushari, Indika & Babel, Sandhya & Samart, Chanatip, 2019. "Biodiesel production in an autoclave reactor using waste palm oil and coconut coir husk derived catalyst," Renewable Energy, Elsevier, vol. 134(C), pages 125-134.
    12. Sangar, Shatesh Kumar & Syazwani, Osman Nur & Farabi, M.S. Ahmad & Razali, S.M. & Shobhana, Gnanasekhar & Teo, Siow Hwa & Taufiq-Yap, Yun Hin, 2019. "Effective biodiesel synthesis from palm fatty acid distillate (PFAD) using carbon-based solid acid catalyst derived glycerol," Renewable Energy, Elsevier, vol. 142(C), pages 658-667.
    13. Leesing, Ratanaporn & Siwina, Siraprapha & Fiala, Khanittha, 2021. "Yeast-based biodiesel production using sulfonated carbon-based solid acid catalyst by an integrated biorefinery of durian peel waste," Renewable Energy, Elsevier, vol. 171(C), pages 647-657.
    14. Rocha, Pablo D. & Oliveira, Leandro S. & Franca, Adriana S., 2019. "Sulfonated activated carbon from corn cobs as heterogeneous catalysts for biodiesel production using microwave-assisted transesterification," Renewable Energy, Elsevier, vol. 143(C), pages 1710-1716.
    15. Niu, Shengli & Yu, Hewei & Zhao, Shuang & Zhang, Xiangyu & Li, Ximing & Han, Kuihua & Lu, Chunmei & Wang, Yongzheng, 2019. "Apparent kinetic and thermodynamic calculation for thermal degradation of stearic acid and its esterification derivants through thermogravimetric analysis," Renewable Energy, Elsevier, vol. 133(C), pages 373-381.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:111:y:2017:i:c:p:611-619. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.