IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v146y2020icp705-718.html
   My bibliography  Save this article

Outlet temperatures of a slinky-type Horizontal Ground Heat Exchanger with the atmosphere-soil interaction

Author

Listed:
  • Tang, Fujiao
  • Nowamooz, Hossein

Abstract

Generally, a Horizontal Ground Heat Exchanger (HGHE) is installed in shallow depths, which can influence the land surface temperature during its operation period, especially when a high heat demand is required. Consequently, the existing methods of using time-varying land surface temperatures are not sufficient for the HGHE simulations. In this paper, a numerical framework considering the atmosphere-soil-HGHE interaction was proposed and validated. The outlet temperatures of a slinky-type HGHE installed in a multi-layered soil field were then investigated under the heating scenario by considering the local meteorological and geological conditions. The results showed that the operation of the HGHE affected obviously the land surface temperature and the ground heat flux. The increase of the installation depth from 0.5 to 2 m increased the outlet temperatures. However, this increase was insignificant when the installation depth increased from 0.5 to 1 m. It was further identified that the non-consideration of the atmosphere-soil interaction overestimated the annual fluid outlet temperature in the heating scenario, and this overestimation decreased from 47.99% to 17.16% as the installation depth increased from 0.5 to 2 m. In conclusion, it is necessary to consider the atmosphere-soil interaction to predict precisely the outlet temperatures of a shallow HGHE.

Suggested Citation

  • Tang, Fujiao & Nowamooz, Hossein, 2020. "Outlet temperatures of a slinky-type Horizontal Ground Heat Exchanger with the atmosphere-soil interaction," Renewable Energy, Elsevier, vol. 146(C), pages 705-718.
  • Handle: RePEc:eee:renene:v:146:y:2020:i:c:p:705-718
    DOI: 10.1016/j.renene.2019.07.029
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119310493
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.07.029?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Defever, Fabrice & Imbruno, Michele & Kneller, Richard, 2020. "Trade liberalization, input intermediaries and firm productivity: Evidence from China," Journal of International Economics, Elsevier, vol. 126(C).
    2. Han, Chanjuan & Ellett, Kevin M. & Naylor, Shawn & Yu, Xiong (Bill), 2017. "Influence of local geological data on the performance of horizontal ground-coupled heat pump system integrated with building thermal loads," Renewable Energy, Elsevier, vol. 113(C), pages 1046-1055.
    3. Choi, Wonjun & Ooka, Ryozo, 2016. "Effect of disturbance on thermal response test, part 2: Numerical study of applicability and limitation of infinite line source model for interpretation under disturbance from outdoor environment," Renewable Energy, Elsevier, vol. 85(C), pages 1090-1105.
    4. Spyros Galanis, 2021. "Speculative trade and the value of public information," Journal of Public Economic Theory, Association for Public Economic Theory, vol. 23(1), pages 53-68, February.
    5. Nowamooz, Hossein & Nikoosokhan, Saeid & Lin, Jian & Chazallon, Cyrille, 2015. "Finite difference modeling of heat distribution in multilayer soils with time-spatial hydrothermal properties," Renewable Energy, Elsevier, vol. 76(C), pages 7-15.
    6. Shortall, Ruth & Davidsdottir, Brynhildur & Axelsson, Guðni, 2015. "Geothermal energy for sustainable development: A review of sustainability impacts and assessment frameworks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 391-406.
    7. Jun-Seo Jeon & Seung-Rae Lee & Min-Jun Kim & Seok Yoon, 2018. "Suggestion of a Scale Factor to Design Spiral-Coil-Type Horizontal Ground Heat Exchangers," Energies, MDPI, vol. 11(10), pages 1-16, October.
    8. Self, Stuart J. & Reddy, Bale V. & Rosen, Marc A., 2013. "Geothermal heat pump systems: Status review and comparison with other heating options," Applied Energy, Elsevier, vol. 101(C), pages 341-348.
    9. Go, Gyu-Hyun & Lee, Seung-Rae & Yoon, Seok & Kim, Min-Jun, 2016. "Optimum design of horizontal ground-coupled heat pump systems using spiral-coil-loop heat exchangers," Applied Energy, Elsevier, vol. 162(C), pages 330-345.
    10. Casasso, Alessandro & Sethi, Rajandrea, 2014. "Efficiency of closed loop geothermal heat pumps: A sensitivity analysis," Renewable Energy, Elsevier, vol. 62(C), pages 737-746.
    11. Naylor, Shawn & Ellett, Kevin M. & Gustin, Andrew R., 2015. "Spatiotemporal variability of ground thermal properties in glacial sediments and implications for horizontal ground heat exchanger design," Renewable Energy, Elsevier, vol. 81(C), pages 21-30.
    12. Florides, Georgios & Kalogirou, Soteris, 2007. "Ground heat exchangers—A review of systems, models and applications," Renewable Energy, Elsevier, vol. 32(15), pages 2461-2478.
    13. Dietrich, Ottfried & Fahle, Marcus & Seyfarth, Manfred, 2016. "Behavior of water balance components at sites with shallow groundwater tables: Possibilities and limitations of their simulation using different ways to control weighable groundwater lysimeters," Agricultural Water Management, Elsevier, vol. 163(C), pages 75-89.
    14. Selamat, Salsuwanda & Miyara, Akio & Kariya, Keishi, 2016. "Numerical study of horizontal ground heat exchangers for design optimization," Renewable Energy, Elsevier, vol. 95(C), pages 561-573.
    15. Garcia Gonzalez, Raquel & Verhoef, Anne & Vidale, Pier Luigi & Main, Bruce & Gan, Guogui & Wu, Yupeng, 2012. "Interactions between the physical soil environment and a horizontal ground coupled heat pump, for a domestic site in the UK," Renewable Energy, Elsevier, vol. 44(C), pages 141-153.
    16. Xiong, Zeyu & Fisher, Daniel E. & Spitler, Jeffrey D., 2015. "Development and validation of a Slinky™ ground heat exchanger model," Applied Energy, Elsevier, vol. 141(C), pages 57-69.
    17. Tang, Fujiao & Nowamooz, Hossein, 2018. "Long-term performance of a shallow borehole heat exchanger installed in a geothermal field of Alsace region," Renewable Energy, Elsevier, vol. 128(PA), pages 210-222.
    18. Al-Ameen, Yasameen & Ianakiev, Anton & Evans, Robert, 2018. "Recycling construction and industrial landfill waste material for backfill in horizontal ground heat exchanger systems," Energy, Elsevier, vol. 151(C), pages 556-568.
    19. Gan, Guohui, 2018. "Dynamic thermal performance of horizontal ground source heat pumps – The impact of coupled heat and moisture transfer," Energy, Elsevier, vol. 152(C), pages 877-887.
    20. Chalhoub, Maha & Bernier, Michel & Coquet, Yves & Philippe, Mikael, 2017. "A simple heat and moisture transfer model to predict ground temperature for shallow ground heat exchangers," Renewable Energy, Elsevier, vol. 103(C), pages 295-307.
    21. Guohui Gan, 2013. "Dynamic thermal modelling of horizontal ground-source heat pumps," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 8(2), pages 95-105, February.
    22. Galanis, S. & Ioannou, C. & Kotronis, S., 2019. "Information Aggregation Under Ambiguity: Theory and Experimental Evidence," Working Papers 20/05, Department of Economics, City University London.
    23. Paul Levine & Joseph Pearlman & Stephen Wright & Bo Yang, 2019. "Information, VARs and DSGE Models," School of Economics Discussion Papers 1619, School of Economics, University of Surrey.
    24. Mamageishvili, A. & Schlegel, J. C., 2019. "Optimal Smart Contracts with Costly Verification," Working Papers 19/13, Department of Economics, City University London.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xavier Léveillée-Dallaire & Jasmin Raymond & Jónas Þór Snæbjörnsson & Hikari Fujii & Hubert Langevin, 2023. "Performance Assessment of Horizontal Ground Heat Exchangers under a Greenhouse in Quebec, Canada," Energies, MDPI, vol. 16(15), pages 1-24, July.
    2. Jing, Zefeng & Wang, Huaijiu & Feng, Chenchen & Wang, Shuzhong, 2020. "Numerical study on the heat characteristics of a novel artificial seepage thermal storage based on the successive four seasons," Renewable Energy, Elsevier, vol. 160(C), pages 1185-1193.
    3. Hou, Gaoyang & Taherian, Hessam & Song, Ying & Jiang, Wei & Chen, Diyi, 2022. "A systematic review on optimal analysis of horizontal heat exchangers in ground source heat pump systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    4. Bulmez, A.M. & Ciofoaia, V. & Năstase, G. & Dragomir, G. & Brezeanu, A.I. & Şerban, A., 2022. "An experimental work on the performance of a solar-assisted ground-coupled heat pump using a horizontal ground heat exchanger," Renewable Energy, Elsevier, vol. 183(C), pages 849-865.
    5. Dinh, Ba Huu & Kim, Young-Sang & Yoon, Seok, 2022. "Experimental and numerical studies on the performance of horizontal U-type and spiral-coil-type ground heat exchangers considering economic aspects," Renewable Energy, Elsevier, vol. 186(C), pages 505-516.
    6. Tang, F. & Lahoori, M. & Nowamooz, H. & Rosin-Paumier, S. & Masrouri, F., 2021. "A numerical study into effects of soil compaction and heat storage on thermal performance of a Horizontal Ground Heat Exchanger," Renewable Energy, Elsevier, vol. 172(C), pages 740-752.
    7. Shi, Yu & Cui, Qiliang & Song, Xianzhi & Xu, Fuqiang & Song, Guofeng, 2022. "Study on thermal performances of a horizontal ground heat exchanger geothermal system with different configurations and arrangements," Renewable Energy, Elsevier, vol. 193(C), pages 448-463.
    8. Yelnar Yerdesh & Tangnur Amanzholov & Abdurashid Aliuly & Abzal Seitov & Amankeldy Toleukhanov & Mohanraj Murugesan & Olivier Botella & Michel Feidt & Hua Sheng Wang & Alexandr Tsoy & Yerzhan Belyayev, 2022. "Experimental and Theoretical Investigations of a Ground Source Heat Pump System for Water and Space Heating Applications in Kazakhstan," Energies, MDPI, vol. 15(22), pages 1-25, November.
    9. Shahbaz Ahmad & Zarghaam Haider Rizvi & Joan Chetam Christine Arp & Frank Wuttke & Vineet Tirth & Saiful Islam, 2021. "Evolution of Temperature Field around Underground Power Cable for Static and Cyclic Heating," Energies, MDPI, vol. 14(23), pages 1-19, December.
    10. Monika Gwadera & Krzysztof Kupiec, 2021. "Modeling the Temperature Field in the Ground with an Installed Slinky-Coil Heat Exchanger," Energies, MDPI, vol. 14(13), pages 1-20, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tang, F. & Lahoori, M. & Nowamooz, H. & Rosin-Paumier, S. & Masrouri, F., 2021. "A numerical study into effects of soil compaction and heat storage on thermal performance of a Horizontal Ground Heat Exchanger," Renewable Energy, Elsevier, vol. 172(C), pages 740-752.
    2. Somogyi, Viola & Sebestyén, Viktor & Nagy, Georgina, 2017. "Scientific achievements and regulation of shallow geothermal systems in six European countries – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 934-952.
    3. Liu, Changqing & He, Yigang & Peng, Guanghan, 2019. "The stabilization effect of self-delayed flux integral for two-lane lattice hydrodynamic model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    4. Torres-Vargas, G. & Fossion, R. & Méndez-Bermúdez, J.A., 2020. "Normal mode analysis of spectra of random networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    5. Aldakheel, F. & Ismail, M.S. & Hughes, K.J. & Ingham, D.B. & Ma, L. & Pourkashanian, M. & Cumming, D. & Smith, R., 2020. "Gas permeability, wettability and morphology of gas diffusion layers before and after performing a realistic ex-situ compression test," Renewable Energy, Elsevier, vol. 151(C), pages 1082-1091.
    6. Zhu, Wen-Xing & Zhang, Jing-Yu & Song, Ze-Rui, 2019. "Study on braking process of vehicles at the signalized intersection based on car-following theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 1306-1314.
    7. Borjas, George J. & Cassidy, Hugh, 2019. "The wage penalty to undocumented immigration," Labour Economics, Elsevier, vol. 61(C).
    8. Birol, Fatih & Okogu, Bright E., 1997. "Purchasing-Power-Parity (PPP) approach to energy-efficiency measurement: Implications for energy and environmental policy," Energy, Elsevier, vol. 22(1), pages 7-16.
    9. Sen, Parongama, 2020. "Scaling and crossover behaviour in a truncated long range quantum walk," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    10. Gargiulo, Nicola & Peluso, Antonio & Aprea, Paolo & Marino, Ottavio & Cioffi, Raffaele & Jannelli, Elio & Cimino, Stefano & Lisi, Luciana & Caputo, Domenico, 2019. "Chromium-based MIL-101 metal organic framework as a fully regenerable D4 adsorbent for biogas purification," Renewable Energy, Elsevier, vol. 138(C), pages 230-235.
    11. Vilela, André L.M. & Wang, Chao & Nelson, Kenric P. & Stanley, H. Eugene, 2019. "Majority-vote model for financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 762-770.
    12. Dutton, Hilary & Deane, Kelsey L. & Bullen, Pat, 2020. "Opening up: An exploration of youth mentor self-disclosure using laboratory-based direct observation," Children and Youth Services Review, Elsevier, vol. 108(C).
    13. Charness, Gary & List, John A. & Rustichini, Aldo & Samek, Anya & Van De Ven, Jeroen, 2019. "Theory of mind among disadvantaged children: Evidence from a field experiment," Journal of Economic Behavior & Organization, Elsevier, vol. 166(C), pages 174-194.
    14. Wu, Jing Cynthia & Zhang, Ji, 2019. "A shadow rate New Keynesian model," Journal of Economic Dynamics and Control, Elsevier, vol. 107(C), pages 1-1.
    15. Murray, Jean P. & Steinfeld, Aldo & Fletcher, Edward A., 1995. "Metals, nitrides, and carbides via solar carbothermal reduction of metal oxides," Energy, Elsevier, vol. 20(7), pages 695-704.
    16. Li, Zhiyu & Xu, Xiwei & Jiang, Enchen & Han, Ping & Sun, Yan & Zhou, Ling & Zhong, Peidong & Fan, Xudong, 2020. "Alkane from hydrodeoxygenation (HDO) combined with in-situ multistage condensation of biomass continuous pyrolysis bio-oil via mixed supports catalyst Ni/HZSM-5-γ-Al2O3," Renewable Energy, Elsevier, vol. 149(C), pages 535-548.
    17. Bistline, John & Santen, Nidhi & Young, David, 2019. "The economic geography of variable renewable energy and impacts of trade formulations for renewable mandates," Renewable and Sustainable Energy Reviews, Elsevier, vol. 106(C), pages 79-96.
    18. Mershon, Carol, 2020. "What effect do local political elites have on infant and child death? Elected and chiefly authority in South Africa," Social Science & Medicine, Elsevier, vol. 251(C).
    19. Salo, Sonja & Jokisalo, Juha & Syri, Sanna & Kosonen, Risto, 2019. "Individual temperature control on demand response in a district heated office building in Finland," Energy, Elsevier, vol. 180(C), pages 946-954.
    20. Chen, Jun & Dong, Wang & Tong, Yixing & Zhang, Feida, 2020. "Corporate philanthropy and corporate misconduct: Evidence from China," International Review of Economics & Finance, Elsevier, vol. 65(C), pages 17-31.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:146:y:2020:i:c:p:705-718. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.