IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v230y2024ics0960148124008930.html
   My bibliography  Save this article

A hybrid numerical model for horizontal ground heat exchanger

Author

Listed:
  • Tong, Cang
  • Li, Xiangli
  • Ju, Hengjin
  • Duanmu, Lin
  • Huang, Caifeng

Abstract

The horizontal ground heat exchanger (HGHE) possesses a complicated heat transfer mechanism as its extensive spatial scale, long operational duration, and vulnerability to meteorological conditions. Consequently, the long-period simulations of HGHE usually involve significant computational costs, posing challenges for its dynamic optimization implementation. Therefore, this study initially established and validated a conventional numerical (full-order) model for HGHE as the reference model. Subsequently, a hybrid model was developed using the proposed adaptive proper orthogonal decomposition (POD) method. By analyzing the influential characteristics, the study identified the solution strategy and the key parameter values for adaptive POD, followed by the generality tests. The hybrid model proved to successfully mitigate the issue of error accumulation commonly associated with native POD extrapolation. Finally, employing a long-running engineering case study, the accuracy and the solution efficiency of the hybrid model were compared against those of the conventional (full-order) model. The results demonstrated that the hybrid model maintained computational accuracy at a comparable level while exhibiting a computational efficiency 326 % higher than that of the conventional (full-order) model, without requiring additional computational resources. This study can provide efficient modeling support for the dynamic optimization design of HGHE.

Suggested Citation

  • Tong, Cang & Li, Xiangli & Ju, Hengjin & Duanmu, Lin & Huang, Caifeng, 2024. "A hybrid numerical model for horizontal ground heat exchanger," Renewable Energy, Elsevier, vol. 230(C).
  • Handle: RePEc:eee:renene:v:230:y:2024:i:c:s0960148124008930
    DOI: 10.1016/j.renene.2024.120825
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124008930
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.120825?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:230:y:2024:i:c:s0960148124008930. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.