IDEAS home Printed from https://ideas.repec.org/a/oup/ijlctc/v8y2013i2p95-105.html
   My bibliography  Save this article

Dynamic thermal modelling of horizontal ground-source heat pumps

Author

Listed:
  • Guohui Gan

Abstract

A computer program has been developed for numerical simulation of the dynamic thermal performance of horizontally coupled heat exchangers for ground-source heat pumps, taking account of dynamic variations of climatic, load and soil conditions. The program was used to investigate the effects of operating and start times, installation depth and soil freezing on the heat exchanger performance. It is shown that the rate of heat extraction decreases with increasing operating time. Operating a heat pump with an earlier start date in autumn would give rise to a higher amount of cumulative heat extraction. Also, a heat exchanger installed at a shallower depth can provide a larger heat extraction rate at the early stage of heating operation. In addition, soil freezing enhances heat extraction. Copyright , Oxford University Press.

Suggested Citation

  • Guohui Gan, 2013. "Dynamic thermal modelling of horizontal ground-source heat pumps," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 8(2), pages 95-105, February.
  • Handle: RePEc:oup:ijlctc:v:8:y:2013:i:2:p:95-105
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/ijlct/ctt012
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gan, Guohui, 2017. "Dynamic thermal simulation of horizontal ground heat exchangers for renewable heating and ventilation of buildings," Renewable Energy, Elsevier, vol. 103(C), pages 361-371.
    2. Somogyi, Viola & Sebestyén, Viktor & Nagy, Georgina, 2017. "Scientific achievements and regulation of shallow geothermal systems in six European countries – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 934-952.
    3. Gan, Guohui, 2018. "Dynamic thermal performance of horizontal ground source heat pumps – The impact of coupled heat and moisture transfer," Energy, Elsevier, vol. 152(C), pages 877-887.
    4. Kayaci, Nurullah, 2020. "Energy and exergy analysis and thermo-economic optimization of the ground source heat pump integrated with radiant wall panel and fan-coil unit with floor heating or radiator," Renewable Energy, Elsevier, vol. 160(C), pages 333-349.
    5. Guohui Gan, 2017. "Impacts of dynamic interactions on the predicted thermal performance of earth–air heat exchangers for preheating, cooling and ventilation of buildings," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 12(2), pages 208-223.
    6. Tang, Fujiao & Nowamooz, Hossein, 2020. "Outlet temperatures of a slinky-type Horizontal Ground Heat Exchanger with the atmosphere-soil interaction," Renewable Energy, Elsevier, vol. 146(C), pages 705-718.
    7. Sofyan, Sarwo Edhy & Hu, Eric & Kotousov, Andrei, 2016. "A new approach to modelling of a horizontal geo-heat exchanger with an internal source term," Applied Energy, Elsevier, vol. 164(C), pages 963-971.
    8. Krzysztof Neupauer & Sebastian Pater & Krzysztof Kupiec, 2018. "Study of Ground Heat Exchangers in the Form of Parallel Horizontal Pipes Embedded in the Ground," Energies, MDPI, vol. 11(3), pages 1-16, February.
    9. Bottarelli, M. & Bortoloni, M. & Su, Y., 2019. "On the sizing of a novel Flat-Panel ground heat exchanger in coupling with a dual-source heat pump," Renewable Energy, Elsevier, vol. 142(C), pages 552-560.
    10. Tang, F. & Lahoori, M. & Nowamooz, H. & Rosin-Paumier, S. & Masrouri, F., 2021. "A numerical study into effects of soil compaction and heat storage on thermal performance of a Horizontal Ground Heat Exchanger," Renewable Energy, Elsevier, vol. 172(C), pages 740-752.
    11. Gan, Guohui, 2015. "Simulation of dynamic interactions of the earth–air heat exchanger with soil and atmosphere for preheating of ventilation air," Applied Energy, Elsevier, vol. 158(C), pages 118-132.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:ijlctc:v:8:y:2013:i:2:p:95-105. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/ijlct .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.