IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v138y2019icp39-53.html
   My bibliography  Save this article

Potential of ventilation systems with thermal energy storage using PCMs applied to air conditioned buildings

Author

Listed:
  • Chen, Xiaoming
  • Zhang, Quan
  • Zhai, Zhiqiang John
  • Ma, Xiaowei

Abstract

This paper studies the potential application of ventilation systems with thermal energy storage (TES) using phase change materials (PCMs) for space cooling in air conditioned buildings during the summer. A south-facing middle office room located in Beijing, China is considered for study. To simulate the indoor thermal environment and energy consumption of the room, a dynamic computational model which consists of a building thermal model, a heat transfer model of a TES unit and the performance curve of an air conditioner (AC) is built and validated. The time lag to switch on AC, the cooling energy provided by AC, PCMs and structure elements, the runtime of AC and fan, and the overall electricity energy consumption of the TES system are calculated and compared to a base case without night ventilation (NV) and a case with conventional NV system. The results indicate that the higher the indoor temperature set point, the higher the cooling energy contributions of PCMs and structure elements and therefore the higher the potential application of the TES system. The electricity energy saving ratio (ESR) by using the TES system over the base case is found to be 16.9%–50.8%, while that against the conventional NV system is 9.2%–33.6%.

Suggested Citation

  • Chen, Xiaoming & Zhang, Quan & Zhai, Zhiqiang John & Ma, Xiaowei, 2019. "Potential of ventilation systems with thermal energy storage using PCMs applied to air conditioned buildings," Renewable Energy, Elsevier, vol. 138(C), pages 39-53.
  • Handle: RePEc:eee:renene:v:138:y:2019:i:c:p:39-53
    DOI: 10.1016/j.renene.2019.01.026
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119300266
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.01.026?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Artmann, N. & Manz, H. & Heiselberg, P., 2007. "Climatic potential for passive cooling of buildings by night-time ventilation in Europe," Applied Energy, Elsevier, vol. 84(2), pages 187-201, February.
    2. Borderon, Julien & Virgone, Joseph & Cantin, Richard, 2015. "Modeling and simulation of a phase change material system for improving summer comfort in domestic residence," Applied Energy, Elsevier, vol. 140(C), pages 288-296.
    3. Mosaffa, A.H. & Garousi Farshi, L. & Infante Ferreira, C.A. & Rosen, M.A., 2014. "Energy and exergy evaluation of a multiple-PCM thermal storage unit for free cooling applications," Renewable Energy, Elsevier, vol. 68(C), pages 452-458.
    4. Halawa, E. & Saman, W., 2011. "Thermal performance analysis of a phase change thermal storage unit for space heating," Renewable Energy, Elsevier, vol. 36(1), pages 259-264.
    5. Sun, Xiaoqin & Zhang, Quan & Medina, Mario A. & Liao, Shuguang, 2015. "Performance of a free-air cooling system for telecommunications base stations using phase change materials (PCMs): In-situ tests," Applied Energy, Elsevier, vol. 147(C), pages 325-334.
    6. Halawa, E. & Saman, W. & Bruno, F., 2010. "A phase change processor method for solving a one-dimensional phase change problem with convection boundary," Renewable Energy, Elsevier, vol. 35(8), pages 1688-1695.
    7. Sun, Xiaoqin & Zhang, Quan & Medina, Mario A. & Liu, Yingjun & Liao, Shuguang, 2014. "A study on the use of phase change materials (PCMs) in combination with a natural cold source for space cooling in telecommunications base stations (TBSs) in China," Applied Energy, Elsevier, vol. 117(C), pages 95-103.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bienvenido-Huertas, David & Sánchez-García, Daniel & Rubio-Bellido, Carlos, 2020. "Analysing natural ventilation to reduce the cooling energy consumption and the fuel poverty of social dwellings in coastal zones," Applied Energy, Elsevier, vol. 279(C).
    2. Ljungdahl, V. & Taha, K. & Dallaire, J. & Kieseritzky, E. & Pawelz, F. & Jradi, M. & Veje, C., 2021. "Phase change material based ventilation module - Numerical study and experimental validation of serial design," Energy, Elsevier, vol. 234(C).
    3. Xiaofei Huang & Junwei Yan & Xuan Zhou & Yixin Wu & Shichen Hu, 2023. "Cooling Technologies for Internet Data Center in China: Principle, Energy Efficiency, and Applications," Energies, MDPI, vol. 16(20), pages 1-31, October.
    4. Sarı, Ahmet & Al-Ahmed, Amir & Bicer, Alper & Al-Sulaiman, Fahad A. & Hekimoğlu, Gökhan, 2019. "Investigation of thermal properties and enhanced energy storage/release performance of silica fume/myristic acid composite doped with carbon nanotubes," Renewable Energy, Elsevier, vol. 140(C), pages 779-788.
    5. Piselli, Cristina & Prabhakar, Mohit & de Gracia, Alvaro & Saffari, Mohammad & Pisello, Anna Laura & Cabeza, Luisa F., 2020. "Optimal control of natural ventilation as passive cooling strategy for improving the energy performance of building envelope with PCM integration," Renewable Energy, Elsevier, vol. 162(C), pages 171-181.
    6. Qu, Yue & Chen, Jiayu & Liu, Lifang & Xu, Tao & Wu, Huijun & Zhou, Xiaoqing, 2020. "Study on properties of phase change foam concrete block mixed with paraffin / fumed silica composite phase change material," Renewable Energy, Elsevier, vol. 150(C), pages 1127-1135.
    7. Nikkerdar, F. & Rahimi, M. & Ranjbar, A.A. & Pakrouh, R. & Bahrampoury, R., 2021. "Solar assisted thermal storage system for free heating applications in moderate climates: A case study," Energy, Elsevier, vol. 220(C).
    8. Bashiri Rezaie, Ali & Montazer, Majid, 2019. "One-step preparation of magnetically responsive nano CuFe2O4/fatty acids/polyester composite for dynamic thermal energy management applications," Renewable Energy, Elsevier, vol. 143(C), pages 1839-1851.
    9. Amit Kant Kaushik & Mohammed Arif & Matt M. G. Syal & Muhammad Qasim Rana & Olugbenga Timo Oladinrin & Ahlam Ammar Sharif & Ala’a Saleh Alshdiefat, 2022. "Effect of Indoor Environment on Occupant Air Comfort and Productivity in Office Buildings: A Response Surface Analysis Approach," Sustainability, MDPI, vol. 14(23), pages 1-24, November.
    10. Ji, Wenhui & Wang, Houhua & Du, Tao & Zhang, Zili, 2019. "Parametric study on a wall-mounted attached ventilation system for night cooling with different supply air conditions," Renewable Energy, Elsevier, vol. 143(C), pages 1865-1876.
    11. Antonio Real-Fernández & Joaquín Navarro-Esbrí & Adrián Mota-Babiloni & Ángel Barragán-Cervera & Luis Domenech & Fernando Sánchez & Angelo Maiorino & Ciro Aprea, 2019. "Modeling of a PCM TES Tank Used as an Alternative Heat Sink for a Water Chiller. Analysis of Performance and Energy Savings," Energies, MDPI, vol. 12(19), pages 1-18, September.
    12. Xinghui Zhang & Qili Shi & Lingai Luo & Yilin Fan & Qian Wang & Guanguan Jia, 2021. "Research Progress on the Phase Change Materials for Cold Thermal Energy Storage," Energies, MDPI, vol. 14(24), pages 1-46, December.
    13. Gohar Gholamibozanjani & Mohammed Farid, 2021. "A Critical Review on the Control Strategies Applied to PCM-Enhanced Buildings," Energies, MDPI, vol. 14(7), pages 1-39, March.
    14. Zhou, Shiqiang & Razaqpur, A. Ghani, 2022. "Efficient heating of buildings by passive solar energy utilizing an innovative dynamic building envelope incorporating phase change material," Renewable Energy, Elsevier, vol. 197(C), pages 305-319.
    15. Rathore, Pushpendra Kumar Singh & Shukla, Shailendra Kumar, 2020. "An experimental evaluation of thermal behavior of the building envelope using macroencapsulated PCM for energy savings," Renewable Energy, Elsevier, vol. 149(C), pages 1300-1313.
    16. Sławomir Kurpaska & Katarzyna Wolny-Koładka & Mateusz Malinowski & Klaudia Tomaszek & Hubert Latała, 2023. "Thermal-Mass and Microbiological Analysis of Forced Air Flow through the Stone Heat Accumulator Bed," Energies, MDPI, vol. 16(11), pages 1-22, May.
    17. Yan, Tian & Xu, Xinhua & Gao, Jiajia & Luo, Yongqiang & Yu, Jinghua, 2020. "Performance evaluation of a PCM-embedded wall integrated with a nocturnal sky radiator," Energy, Elsevier, vol. 210(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Waqas, Adeel & Ud Din, Zia, 2013. "Phase change material (PCM) storage for free cooling of buildings—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 607-625.
    2. Mosaffa, A.H. & Garousi Farshi, L., 2016. "Exergoeconomic and environmental analyses of an air conditioning system using thermal energy storage," Applied Energy, Elsevier, vol. 162(C), pages 515-526.
    3. Farah, Sleiman & Liu, Ming & Saman, Wasim, 2019. "Numerical investigation of phase change material thermal storage for space cooling," Applied Energy, Elsevier, vol. 239(C), pages 526-535.
    4. Liu, Lijun & Zhang, Quan & Zou, Sikai & Du, Sheng & Meng, Fanxi, 2023. "Experimental study on dynamic thermal characteristics of novel thermosyphon with latent thermal energy storage condenser," Energy, Elsevier, vol. 282(C).
    5. Sun, Xiaoqin & Zhang, Quan & Medina, Mario A. & Liao, Shuguang, 2015. "Performance of a free-air cooling system for telecommunications base stations using phase change materials (PCMs): In-situ tests," Applied Energy, Elsevier, vol. 147(C), pages 325-334.
    6. Wang, Huiru & Liu, Zhenyu & Wu, Huiying, 2017. "Entransy dissipation-based thermal resistance optimization of slab LHTES system with multiple PCMs arranged in a 2D array," Energy, Elsevier, vol. 138(C), pages 739-751.
    7. Alizadeh, M. & Sadrameli, S.M., 2016. "Development of free cooling based ventilation technology for buildings: Thermal energy storage (TES) unit, performance enhancement techniques and design considerations – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 619-645.
    8. Pointner, Harald & de Gracia, Alvaro & Vogel, Julian & Tay, N.H.S. & Liu, Ming & Johnson, Maike & Cabeza, Luisa F., 2016. "Computational efficiency in numerical modeling of high temperature latent heat storage: Comparison of selected software tools based on experimental data," Applied Energy, Elsevier, vol. 161(C), pages 337-348.
    9. Isazadeh, Amin & Ziviani, Davide & Claridge, David E., 2023. "Global trends, performance metrics, and energy reduction measures in datacom facilities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 174(C).
    10. Jin, Xing & Hu, Huoyan & Shi, Xing & Zhou, Xin & Yang, Liu & Yin, Yonggao & Zhang, Xiaosong, 2018. "A new heat transfer model of phase change material based on energy asymmetry," Applied Energy, Elsevier, vol. 212(C), pages 1409-1416.
    11. Kalaiselvam, S. & Parameshwaran, R. & Harikrishnan, S., 2012. "Analytical and experimental investigations of nanoparticles embedded phase change materials for cooling application in modern buildings," Renewable Energy, Elsevier, vol. 39(1), pages 375-387.
    12. Nie, Binjian & Palacios, Anabel & Zou, Boyang & Liu, Jiaxu & Zhang, Tongtong & Li, Yunren, 2020. "Review on phase change materials for cold thermal energy storage applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    13. Montazeri, H. & Montazeri, F., 2018. "CFD simulation of cross-ventilation in buildings using rooftop wind-catchers: Impact of outlet openings," Renewable Energy, Elsevier, vol. 118(C), pages 502-520.
    14. Sharif, M.K. Anuar & Al-Abidi, A.A. & Mat, S. & Sopian, K. & Ruslan, M.H. & Sulaiman, M.Y. & Rosli, M.A.M., 2015. "Review of the application of phase change material for heating and domestic hot water systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 557-568.
    15. Wu, Jing & Tremeac, Brice & Terrier, Marie-France & Charni, Mehdi & Gagnière, Emilie & Couenne, Françoise & Hamroun, Boussad & Jallut, Christian, 2016. "Experimental investigation of the dynamic behavior of a large-scale refrigeration – PCM energy storage system. Validation of a complete model," Energy, Elsevier, vol. 116(P1), pages 32-42.
    16. Nie, Binjian & She, Xiaohui & Du, Zheng & Xie, Chunping & Li, Yongliang & He, Zhubing & Ding, Yulong, 2019. "System performance and economic assessment of a thermal energy storage based air-conditioning unit for transport applications," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    17. Tao, Y.B. & He, Ya-Ling, 2018. "A review of phase change material and performance enhancement method for latent heat storage system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 245-259.
    18. Tong, Zheming & Chen, Yujiao & Malkawi, Ali & Liu, Zhu & Freeman, Richard B., 2016. "Energy saving potential of natural ventilation in China: The impact of ambient air pollution," Applied Energy, Elsevier, vol. 179(C), pages 660-668.
    19. Cheng, Xiwen & Zhai, Xiaoqiang, 2018. "Thermal performance analysis and optimization of a cascaded packed bed cool thermal energy storage unit using multiple phase change materials," Applied Energy, Elsevier, vol. 215(C), pages 566-576.
    20. Ham, Sang-Woo & Kim, Min-Hwi & Choi, Byung-Nam & Jeong, Jae-Weon, 2015. "Energy saving potential of various air-side economizers in a modular data center," Applied Energy, Elsevier, vol. 138(C), pages 258-275.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:138:y:2019:i:c:p:39-53. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.