IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v35y2010i8p1688-1695.html
   My bibliography  Save this article

A phase change processor method for solving a one-dimensional phase change problem with convection boundary

Author

Listed:
  • Halawa, E.
  • Saman, W.
  • Bruno, F.

Abstract

A simple yet accurate iterative method for solving a one-dimensional phase change problem with convection boundary is described. The one-dimensional model takes into account the variation in the wall temperature along the direction of the flow as well as the sensible heat during preheating/pre-cooling of the phase change material (PCM). The mathematical derivation of convective boundary conditions has been integrated into a phase change processor (PCP) algorithm that solves the liquid fraction and temperature of the nodes. The algorithm is based on the heat balance at each node as it undergoes heating or cooling which inevitably involves phase change. The paper presents the model and its experimental validation.

Suggested Citation

  • Halawa, E. & Saman, W. & Bruno, F., 2010. "A phase change processor method for solving a one-dimensional phase change problem with convection boundary," Renewable Energy, Elsevier, vol. 35(8), pages 1688-1695.
  • Handle: RePEc:eee:renene:v:35:y:2010:i:8:p:1688-1695
    DOI: 10.1016/j.renene.2010.01.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148110000339
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2010.01.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Waqas, Adeel & Ud Din, Zia, 2013. "Phase change material (PCM) storage for free cooling of buildings—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 607-625.
    2. Halawa, E. & Saman, W., 2011. "Thermal performance analysis of a phase change thermal storage unit for space heating," Renewable Energy, Elsevier, vol. 36(1), pages 259-264.
    3. Wang, Huiru & Liu, Zhenyu & Wu, Huiying, 2017. "Entransy dissipation-based thermal resistance optimization of slab LHTES system with multiple PCMs arranged in a 2D array," Energy, Elsevier, vol. 138(C), pages 739-751.
    4. Li, Y.Q. & He, Y.L. & Song, H.J. & Xu, C. & Wang, W.W., 2013. "Numerical analysis and parameters optimization of shell-and-tube heat storage unit using three phase change materials," Renewable Energy, Elsevier, vol. 59(C), pages 92-99.
    5. Alicia Crespo & Gabriel Zsembinszki & David Vérez & Emiliano Borri & Cèsar Fernández & Luisa F. Cabeza & Alvaro de Gracia, 2021. "Optimization of Design Variables of a Phase Change Material Storage Tank and Comparison of a 2D Implicit vs. 2D Explicit Model," Energies, MDPI, vol. 14(9), pages 1-15, May.
    6. Kalaiselvam, S. & Parameshwaran, R. & Harikrishnan, S., 2012. "Analytical and experimental investigations of nanoparticles embedded phase change materials for cooling application in modern buildings," Renewable Energy, Elsevier, vol. 39(1), pages 375-387.
    7. Mosaffa, A.H. & Garousi Farshi, L. & Infante Ferreira, C.A. & Rosen, M.A., 2014. "Energy and exergy evaluation of a multiple-PCM thermal storage unit for free cooling applications," Renewable Energy, Elsevier, vol. 68(C), pages 452-458.
    8. Chen, Xiaoming & Zhang, Quan & Zhai, Zhiqiang John & Ma, Xiaowei, 2019. "Potential of ventilation systems with thermal energy storage using PCMs applied to air conditioned buildings," Renewable Energy, Elsevier, vol. 138(C), pages 39-53.
    9. Amin, N.A.M. & Belusko, M. & Bruno, F., 2014. "An effectiveness-NTU model of a packed bed PCM thermal storage system," Applied Energy, Elsevier, vol. 134(C), pages 356-362.
    10. Castell, A. & Solé, C., 2015. "An overview on design methodologies for liquid–solid PCM storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 289-307.
    11. Mosaffa, A.H. & Garousi Farshi, L., 2016. "Exergoeconomic and environmental analyses of an air conditioning system using thermal energy storage," Applied Energy, Elsevier, vol. 162(C), pages 515-526.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:35:y:2010:i:8:p:1688-1695. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.