IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v282y2023ics0360544223015906.html
   My bibliography  Save this article

Experimental study on dynamic thermal characteristics of novel thermosyphon with latent thermal energy storage condenser

Author

Listed:
  • Liu, Lijun
  • Zhang, Quan
  • Zou, Sikai
  • Du, Sheng
  • Meng, Fanxi

Abstract

Emergency cooling systems are an essential part of data centers. A water tank is usually used as an emergency cooling source to provide cold thermal energy; however, tanks are bulky and additional uninterrupted power supplies (UPSs) are needed. For flexible emergency cooling, a novel thermosyphon integrated with a latent thermal energy storage condenser (TLTESC) is developed and experimentally studied. The effects of the refrigerant filling ratio and inlet conditions on the dynamic thermal performance are analyzed. With an increase in the refrigerant filling ratio from 48.7% to 82.5%, the cooling capacity decreases; the maximum cooling capacity decreases from 4.68 to 2.03 kW. The superheating temperatures for all cases are always zero, indicative of the two-phase refrigerant being at the evaporator outlet. During the entire operating period, the refrigerant temperatures at the vapor line are considerably higher than those at the liquid line. Moreover, the refrigerant pressure at the evaporator inlet is the highest. Under the optimal filling ratio, the outlet air temperature increases and the maximum cooling capacity increases from 3.6 to 4.8 kW with the inlet air temperature increasing from 30 to 40 °C. The cooling capacity increases with air flow rate during the first half, after which the situation is reversed. The accumulated energy increases slightly as the air flow rate increases. The thermal performance is investigated to promote the application of TLTESC in data center.

Suggested Citation

  • Liu, Lijun & Zhang, Quan & Zou, Sikai & Du, Sheng & Meng, Fanxi, 2023. "Experimental study on dynamic thermal characteristics of novel thermosyphon with latent thermal energy storage condenser," Energy, Elsevier, vol. 282(C).
  • Handle: RePEc:eee:energy:v:282:y:2023:i:c:s0360544223015906
    DOI: 10.1016/j.energy.2023.128196
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223015906
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.128196?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Xingping & Li, Ji & Zhou, Guohui & Lv, Lucang, 2020. "Quantitative analysis of passive seasonal cold storage with a two-phase closed thermosyphon," Applied Energy, Elsevier, vol. 260(C).
    2. Huang, Yongping & Deng, Zilong & Chen, Yongping & Zhang, Chengbin, 2023. "Performance investigation of a biomimetic latent heat thermal energy storage device for waste heat recovery in data centers," Applied Energy, Elsevier, vol. 335(C).
    3. Sun, Xiaoqin & Zhang, Quan & Medina, Mario A. & Liao, Shuguang, 2015. "Performance of a free-air cooling system for telecommunications base stations using phase change materials (PCMs): In-situ tests," Applied Energy, Elsevier, vol. 147(C), pages 325-334.
    4. Bouchenna, Chafea & Huchet, Florian & Aramiou, Carl & Hamard, Erwan & Le Guen, Laurédan & Paul, Jean-Marc, 2021. "Heat exchanger design based on earthen materials," Energy, Elsevier, vol. 227(C).
    5. Zheng, Ziao & Huang, Bin & Lu, Gaofeng & Zhai, Xiaoqiang, 2022. "Design and optimization of an air-based phase change cold storage unit through cascaded construction for emergency cooling in IDC," Energy, Elsevier, vol. 241(C).
    6. Sun, Xiaoqin & Zhang, Quan & Medina, Mario A. & Liu, Yingjun & Liao, Shuguang, 2014. "A study on the use of phase change materials (PCMs) in combination with a natural cold source for space cooling in telecommunications base stations (TBSs) in China," Applied Energy, Elsevier, vol. 117(C), pages 95-103.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gan, Di & Zhu, Peiwang & Xu, Haoran & Xie, Xiangyu & Chai, Fengyuan & Gong, Jueyuan & Li, Jiasong & Xiao, Gang, 2023. "Experimental and simulation study of Mn–Fe particles in a controllable-flow particle solar receiver for high-temperature thermochemical energy storage," Energy, Elsevier, vol. 282(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Isazadeh, Amin & Ziviani, Davide & Claridge, David E., 2023. "Global trends, performance metrics, and energy reduction measures in datacom facilities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 174(C).
    2. Nie, Binjian & Palacios, Anabel & Zou, Boyang & Liu, Jiaxu & Zhang, Tongtong & Li, Yunren, 2020. "Review on phase change materials for cold thermal energy storage applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    3. Chen, Xiaoming & Zhang, Quan & Zhai, Zhiqiang John & Ma, Xiaowei, 2019. "Potential of ventilation systems with thermal energy storage using PCMs applied to air conditioned buildings," Renewable Energy, Elsevier, vol. 138(C), pages 39-53.
    4. Nie, Binjian & She, Xiaohui & Du, Zheng & Xie, Chunping & Li, Yongliang & He, Zhubing & Ding, Yulong, 2019. "System performance and economic assessment of a thermal energy storage based air-conditioning unit for transport applications," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    5. Xia, Guanghui & Zhuang, Dawei & Ding, Guoliang & Lu, Jingchao, 2020. "A quasi-three-dimensional distributed parameter model of micro-channel separated heat pipe applied for cooling telecommunication cabinets," Applied Energy, Elsevier, vol. 276(C).
    6. Alipour, Mehran & Deymi-Dashtebayaz, Mahdi & Asadi, Mostafa, 2023. "Investigation of energy, exergy, and economy of co-generation system of solar electricity and cooling using linear parabolic collector for a data center," Energy, Elsevier, vol. 279(C).
    7. Sun, Xiaoqin & Zhang, Quan & Medina, Mario A. & Liao, Shuguang, 2015. "Performance of a free-air cooling system for telecommunications base stations using phase change materials (PCMs): In-situ tests," Applied Energy, Elsevier, vol. 147(C), pages 325-334.
    8. Chao, Jingwei & Xu, Jiaxing & Yan, Taisen & Xiang, Shizhao & Bai, Zhaoyuan & Wang, Ruzhu & Li, Tingxian, 2023. "Performance analysis of sorption thermal battery for high-density cold energy storage enabled by novel tube-free evaporator," Energy, Elsevier, vol. 273(C).
    9. Zhang, Shuai & Li, Ying & Yan, Yuying, 2024. "Hybrid sensible-latent heat thermal energy storage using natural stones to enhance heat transfer: Energy, exergy, and economic analysis," Energy, Elsevier, vol. 286(C).
    10. Xiaofei Huang & Junwei Yan & Xuan Zhou & Yixin Wu & Shichen Hu, 2023. "Cooling Technologies for Internet Data Center in China: Principle, Energy Efficiency, and Applications," Energies, MDPI, vol. 16(20), pages 1-31, October.
    11. Luo, Mengxi & Zhang, Yongxue & Niu, Yaoyu & Lu, Bohui & Wang, Zixi & Zhang, Jinya & Wang, Ke & Zhu, Jianjun, 2023. "Experimental and numerical investigations on the thermal performance enhancement of a latent heat thermal energy storage unit with several novel snowflake fins," Renewable Energy, Elsevier, vol. 217(C).
    12. Qv, Dehu & Ni, Long & Yao, Yang & Hu, Wenju, 2015. "Reliability verification of a solar–air source heat pump system with PCM energy storage in operating strategy transition," Renewable Energy, Elsevier, vol. 84(C), pages 46-55.
    13. Pielichowska, Kinga & Nowak, Michał & Szatkowski, Piotr & Macherzyńska, Beata, 2016. "The influence of chain extender on properties of polyurethane-based phase change materials modified with graphene," Applied Energy, Elsevier, vol. 162(C), pages 1024-1033.
    14. Liu, Zichu & Quan, Zhenhua & Zhang, Nan & Wang, Yubo & Yang, Mingguang & Zhao, Yaohua, 2023. "Energy and exergy analysis of a novel direct-expansion ice thermal storage system based on three-fluid heat exchanger module," Applied Energy, Elsevier, vol. 330(PB).
    15. Pointner, Harald & de Gracia, Alvaro & Vogel, Julian & Tay, N.H.S. & Liu, Ming & Johnson, Maike & Cabeza, Luisa F., 2016. "Computational efficiency in numerical modeling of high temperature latent heat storage: Comparison of selected software tools based on experimental data," Applied Energy, Elsevier, vol. 161(C), pages 337-348.
    16. Li, Chenglin & Zhang, Guozhu & Xiao, Suguang & Shi, Yehui & Xu, Chenghua & Sun, Yinjuan, 2023. "Numerical investigation on thermal performance enhancement mechanism of tunnel lining GHEs using two-phase closed thermosyphons for building cooling," Renewable Energy, Elsevier, vol. 212(C), pages 875-886.
    17. Srikanth, R. & Nemani, Pavan & Balaji, C., 2015. "Multi-objective geometric optimization of a PCM based matrix type composite heat sink," Applied Energy, Elsevier, vol. 156(C), pages 703-714.
    18. Du, Kun & Calautit, John & Wang, Zhonghua & Wu, Yupeng & Liu, Hao, 2018. "A review of the applications of phase change materials in cooling, heating and power generation in different temperature ranges," Applied Energy, Elsevier, vol. 220(C), pages 242-273.
    19. Lv, Youfu & Yang, Xiaoqing & Li, Xinxi & Zhang, Guoqing & Wang, Ziyuan & Yang, Chengzhao, 2016. "Experimental study on a novel battery thermal management technology based on low density polyethylene-enhanced composite phase change materials coupled with low fins," Applied Energy, Elsevier, vol. 178(C), pages 376-382.
    20. Jin, Xing & Hu, Huoyan & Shi, Xing & Zhou, Xin & Yang, Liu & Yin, Yonggao & Zhang, Xiaosong, 2018. "A new heat transfer model of phase change material based on energy asymmetry," Applied Energy, Elsevier, vol. 212(C), pages 1409-1416.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:282:y:2023:i:c:s0360544223015906. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.