IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v138y2019icp272-283.html
   My bibliography  Save this article

Effect of current collector roughness on performance of passive direct methanol fuel cell

Author

Listed:
  • Munjewar, Seema S.
  • Thombre, Shashikant B.

Abstract

This article examines the effect of current collector (CC) roughness on the passive direct methanol fuel cell (DMFC) performance. The stainless steel has been used for anode and cathode CC. The passive DMFC has been evaluated for different roughness value of the CC. The evaluation of passive DMFC has been done on the basis of polarization test with open circuit voltage (OCV), electrochemical impedance spectroscopy (EIS) and scanning electron microscopy (SEM). The small mathematical model has been developed for mass transport resistance prediction for one dimensional steady state flow. It is observed that the CC roughness has significantly affected the DMFC performance. The performance of conventional passive direct DMFC with a possible minimum roughness value of CC has been compared with the new passive DMFC with an optimum roughness value of CC. The passive DMFC shows the very good performance at 4M methanol concentration with optimum CC roughness of 0.869 μm.

Suggested Citation

  • Munjewar, Seema S. & Thombre, Shashikant B., 2019. "Effect of current collector roughness on performance of passive direct methanol fuel cell," Renewable Energy, Elsevier, vol. 138(C), pages 272-283.
  • Handle: RePEc:eee:renene:v:138:y:2019:i:c:p:272-283
    DOI: 10.1016/j.renene.2019.01.101
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119301144
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.01.101?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ismail, A. & Kamarudin, S.K. & Daud, W.R.W. & Masdar, S. & Hasran, U.A., 2018. "Development of 2D multiphase non-isothermal mass transfer model for DMFC system," Energy, Elsevier, vol. 152(C), pages 263-276.
    2. Munjewar, Seema S. & Thombre, Shashikant B. & Mallick, Ranjan K., 2017. "Approaches to overcome the barrier issues of passive direct methanol fuel cell – Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1087-1104.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhengang Zhao & Fan Zhang & Yanhui Zhang & Dacheng Zhang, 2021. "Performance Optimization of μ DMFC with Foamed Stainless Steel Cathode Current Collector," Energies, MDPI, vol. 14(20), pages 1-13, October.
    2. Maria H. de Sá & Alexandra M. F. R. Pinto & Vânia B. Oliveira, 2022. "Passive Small Direct Alcohol Fuel Cells for Low-Power Portable Applications: Assessment Based on Innovative Increments since 2018," Energies, MDPI, vol. 15(10), pages 1-48, May.
    3. Junxing, Liu & Chagshi, Liu, 2023. "Reliable and precise determination of energy conversion in fuel cells using an integrable energy model," Renewable Energy, Elsevier, vol. 219(P2).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Rongji & Cao, Jiamu & Wang, Weiqi & Zhou, Jing & Chen, Junyu & Chen, Liang & Chen, Weiping & Zhang, Yufeng, 2023. "An improved strategy of passive micro direct methanol fuel cell: Mass transport mechanism optimization dominated by a single hydrophilic layer," Energy, Elsevier, vol. 274(C).
    2. Fang, Shuo & Song, Nan & Liu, Yuntao & Zhao, Chunhui & Wang, Ying, 2024. "Comprehensive energy conversion efficiency analysis of micro direct methanol fuel cell stack based on polarization theory," Energy, Elsevier, vol. 287(C).
    3. Xu, Qidong & Xia, Lingchao & He, Qijiao & Guo, Zengjia & Ni, Meng, 2021. "Thermo-electrochemical modelling of high temperature methanol-fuelled solid oxide fuel cells," Applied Energy, Elsevier, vol. 291(C).
    4. Chen, Fengxiang & Chi, Xuncheng & Wei, Wei & Mo, Tiande & Li, Yu, 2023. "Model-based observer for direct methanol fuel cell concentration estimation by using second-order sliding-mode algorithm," Energy, Elsevier, vol. 263(PD).
    5. Braz, B.A. & Oliveira, V.B. & Pinto, A.M.F.R., 2020. "Optimization of a passive direct methanol fuel cell with different current collector materials," Energy, Elsevier, vol. 208(C).
    6. Pan, Zhefei & Bi, Yanding & An, Liang, 2020. "A cost-effective and chemically stable electrode binder for alkaline-acid direct ethylene glycol fuel cells," Applied Energy, Elsevier, vol. 258(C).
    7. Ke, Yuzhi & Yuan, Wei & Zhou, Feikun & Guo, Wenwen & Li, Jinguang & Zhuang, Ziyi & Su, Xiaoqing & Lu, Biaowu & Zhao, Yonghao & Tang, Yong & Chen, Yu & Song, Jianli, 2021. "A critical review on surface-pattern engineering of nafion membrane for fuel cell applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    8. Anthony E. Hughes & Nawshad Haque & Stephen A. Northey & Sarbjit Giddey, 2021. "Platinum Group Metals: A Review of Resources, Production and Usage with a Focus on Catalysts," Resources, MDPI, vol. 10(9), pages 1-40, September.
    9. Maria H. de Sá & Catarina S. Moreira & Alexandra M. F. R. Pinto & Vânia B. Oliveira, 2022. "Recent Advances in the Development of Nanocatalysts for Direct Methanol Fuel Cells," Energies, MDPI, vol. 15(17), pages 1-47, August.
    10. Chi, Xuncheng & Chen, Fengxiang & Mo, Tiande & Li, Yu & Wei, Wei, 2024. "Improve methanol efficiency for direct methanol fuel cell system via investigation and control of optimal operating methanol concentration," Energy, Elsevier, vol. 290(C).
    11. Dabiri, Soroush & Hashemi, Mohammadreza & Rahimi, Mohammadfazel & Bahiraei, Mehdi & Khodabandeh, Erfan, 2018. "Design of an innovative distributor to improve flow uniformity using cylindrical obstacles in header of a fuel cell," Energy, Elsevier, vol. 152(C), pages 719-731.
    12. Fang, Shuo & Liu, Yuntao & Zhao, Chunhui & Huang, Lilian & Zhong, Zhi & Wang, Yun, 2021. "Polarization analysis of a micro direct methanol fuel cell stack based on Debye-Hückel ionic atmosphere theory," Energy, Elsevier, vol. 222(C).
    13. Mohamedali, Mohanned & Ayodele, Olumide & Ibrahim, Hussameldin, 2020. "Challenges and prospects for the photocatalytic liquefaction of methane into oxygenated hydrocarbons," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    14. Lei, Gang & Zheng, Hualin & Zhang, Caizhi & Chen, Huicui & Chin, Cheng Siong & Xu, Xinhai, 2024. "Analyzing and modeling of CO purging for high-temperature proton exchange membrane fuel cells," Energy, Elsevier, vol. 302(C).
    15. Abdelkareem, Mohammad Ali & Allagui, Anis & Sayed, Enas Taha & El Haj Assad, M. & Said, Zafar & Elsaid, Khaled, 2019. "Comparative analysis of liquid versus vapor-feed passive direct methanol fuel cells," Renewable Energy, Elsevier, vol. 131(C), pages 563-584.
    16. Beatriz A. Braz & Vânia B. Oliveira & Alexandra M. F. R. Pinto, 2020. "Experimental Evaluation of the Effect of the Anode Diffusion Layer Properties on the Performance of a Passive Direct Methanol Fuel Cell," Energies, MDPI, vol. 13(19), pages 1-11, October.
    17. Wang, Luwen & Yuan, Zhaoxia & Wen, Fei & Cheng, Yuhua & Zhang, Yufeng & Wang, Gaofeng, 2018. "A bipolar passive DMFC stack for portable applications," Energy, Elsevier, vol. 144(C), pages 587-593.
    18. Zhou, Jing & Cao, Jiamu & Zhang, Yufeng & Liu, Junfeng & Chen, Junyu & Li, Mingxue & Wang, Weiqi & Liu, Xiaowei, 2021. "Overcoming undesired fuel crossover: Goals of methanol-resistant modification of polymer electrolyte membranes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    19. Lei, Gang & Zheng, Hualin & Zhang, Jun & Siong Chin, Cheng & Xu, Xinhai & Zhou, Weijiang & Zhang, Caizhi, 2023. "Analyzing characteristic and modeling of high-temperature proton exchange membrane fuel cells with CO poisoning effect," Energy, Elsevier, vol. 282(C).
    20. Chen, Xueye & Li, Tiechuan & Shen, Jienan & Hu, Zengliang, 2017. "From structures, packaging to application: A system-level review for micro direct methanol fuel cell," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 669-678.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:138:y:2019:i:c:p:272-283. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.