IDEAS home Printed from https://ideas.repec.org/a/gam/jresou/v10y2021i9p93-d639449.html
   My bibliography  Save this article

Platinum Group Metals: A Review of Resources, Production and Usage with a Focus on Catalysts

Author

Listed:
  • Anthony E. Hughes

    (CSIRO Mineral Resources, Gate 5, Normanby Rd, Clayton, VIC 3168, Australia
    Institute for Frontier Materials, Deakin University, 75 Pigdons Rd, Waurn Ponds, Geelong, VIC 3216, Australia)

  • Nawshad Haque

    (CSIRO Energy, Gate 5, Normanby Rd, Clayton, VIC 3168, Australia)

  • Stephen A. Northey

    (Institute for Sustainable Futures, University of Technology Sydney, Building 10, 235 Jones St, Ultimo, NSW 2007, Australia)

  • Sarbjit Giddey

    (CSIRO Energy, Gate 5, Normanby Rd, Clayton, VIC 3168, Australia)

Abstract

The major applications of PGMs are as catalysts in automotive industry, petroleum refining, environmental (gas remediation), industrial chemical production (e.g., ammonia production, fine chemicals), electronics, and medical fields. As the next generation energy technologies for hydrogen production, such as electrolysers and fuel cells for stationary and transport applications, become mature, the demand for PGMs is expected to further increase. Reserves and annual production of Ru, Rh, Pd, Ir, and Pt have been determined and reported. Based on currently available resources, there is around 200 years lifetime based on current demand for all PGMs, apart from Pd, which may be closer to 100 years. Annual primary production of 190 t/a for Pt and 217 t/a for Pd, in combination with recycling of 65.4 t/a for Pt and 97.2 t/a for Pd, satisfies current demand. By far, the largest demand for PGMs is for all forms of catalysis, with the largest demand in auto catalysis. In fact, the biggest driver of demand and price for Pt, Pd, and Rh, in particular, is auto emission regulation, which has driven auto-catalyst design. Recovery of PGMs through recycling is generally good, but some catalytic processes, particularly auto-catalysis, result in significant dissipation. In the US, about 70% of the recycling stream from the end-of-life vehicles is a significant source of global secondary PGMs recovered from spent auto-catalyst. The significant use of PGMs in the large global auto industry is likely to continue, but the long-term transition towards electric vehicles will alter demand profiles.

Suggested Citation

  • Anthony E. Hughes & Nawshad Haque & Stephen A. Northey & Sarbjit Giddey, 2021. "Platinum Group Metals: A Review of Resources, Production and Usage with a Focus on Catalysts," Resources, MDPI, vol. 10(9), pages 1-40, September.
  • Handle: RePEc:gam:jresou:v:10:y:2021:i:9:p:93-:d:639449
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2079-9276/10/9/93/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2079-9276/10/9/93/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Seung-Kyun Kang & Rory K. J. Murphy & Suk-Won Hwang & Seung Min Lee & Daniel V. Harburg & Neil A. Krueger & Jiho Shin & Paul Gamble & Huanyu Cheng & Sooyoun Yu & Zhuangjian Liu & Jordan G. McCall & Ma, 2016. "Bioresorbable silicon electronic sensors for the brain," Nature, Nature, vol. 530(7588), pages 71-76, February.
    2. Zachary P. Cano & Dustin Banham & Siyu Ye & Andreas Hintennach & Jun Lu & Michael Fowler & Zhongwei Chen, 2018. "Batteries and fuel cells for emerging electric vehicle markets," Nature Energy, Nature, vol. 3(4), pages 279-289, April.
    3. Mona Arnold & Elina Pohjalainen & Sören Steger & Wolfgang Kaerger & Jan-Henk Welink, 2021. "Economic Viability of Extracting High Value Metals from End of Life Vehicles," Sustainability, MDPI, vol. 13(4), pages 1-12, February.
    4. Ju, HyungKuk & Badwal, Sukhvinder & Giddey, Sarbjit, 2018. "A comprehensive review of carbon and hydrocarbon assisted water electrolysis for hydrogen production," Applied Energy, Elsevier, vol. 231(C), pages 502-533.
    5. Mathieu Saurat & Stefan Bringezu, 2009. "Platinum Group Metal Flows of Europe, Part II," Journal of Industrial Ecology, Yale University, vol. 13(3), pages 406-421, June.
    6. Yang, Chi-Jen, 2009. "An impending platinum crisis and its implications for the future of the automobile," Energy Policy, Elsevier, vol. 37(5), pages 1805-1808, May.
    7. Simons, Andrew & Bauer, Christian, 2015. "A life-cycle perspective on automotive fuel cells," Applied Energy, Elsevier, vol. 157(C), pages 884-896.
    8. Nawshad Haque & Anthony Hughes & Seng Lim & Chris Vernon, 2014. "Rare Earth Elements: Overview of Mining, Mineralogy, Uses, Sustainability and Environmental Impact," Resources, MDPI, vol. 3(4), pages 1-22, October.
    9. Pode, Ramchandra, 2020. "Organic light emitting diode devices: An energy efficient solid state lighting for applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    10. Perrine Chancerel & Christina E.M. Meskers & Christian Hagelüken & Vera Susanne Rotter, 2009. "Assessment of Precious Metal Flows During Preprocessing of Waste Electrical and Electronic Equipment," Journal of Industrial Ecology, Yale University, vol. 13(5), pages 791-810, October.
    11. Higgins, Andrew & Paevere, Phillip & Gardner, John & Quezada, George, 2012. "Combining choice modelling and multi-criteria analysis for technology diffusion: An application to the uptake of electric vehicles," Technological Forecasting and Social Change, Elsevier, vol. 79(8), pages 1399-1412.
    12. Grandell, Leena & Lehtilä, Antti & Kivinen, Mari & Koljonen, Tiina & Kihlman, Susanna & Lauri, Laura S., 2016. "Role of critical metals in the future markets of clean energy technologies," Renewable Energy, Elsevier, vol. 95(C), pages 53-62.
    13. Munjewar, Seema S. & Thombre, Shashikant B. & Mallick, Ranjan K., 2017. "Approaches to overcome the barrier issues of passive direct methanol fuel cell – Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1087-1104.
    14. Zhang, Kesong & Hu, Jingnan & Gao, Shuzheng & Liu, Yungang & Huang, Xianjiang & Bao, Xiaofeng, 2010. "Sulfur content of gasoline and diesel fuels in northern China," Energy Policy, Elsevier, vol. 38(6), pages 2934-2940, June.
    15. Stropnik, R. & Sekavčnik, M. & Ferriz, A.M. & Mori, M., 2018. "Reducing environmental impacts of the ups system based on PEM fuel cell with circular economy," Energy, Elsevier, vol. 165(PB), pages 824-835.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Francisco Ríos Muñoz & Camilo Peña Ramírez & José Meza & Tenzin Crouch, 2024. "Platinum Group Metals Extraction from Asteroids vs Earth: An Overview of the Industrial Ecosystems, Technologies and Risks," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 37(3), pages 681-700, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Seck, Gondia Sokhna & Hache, Emmanuel & D'Herbemont, Vincent & Guyot, Mathis & Malbec, Louis-Marie, 2023. "Hydrogen development in Europe: Estimating material consumption in net zero emissions scenarios," International Economics, Elsevier, vol. 176(C).
    2. Tokimatsu, Koji & Höök, Mikael & McLellan, Benjamin & Wachtmeister, Henrik & Murakami, Shinsuke & Yasuoka, Rieko & Nishio, Masahiro, 2018. "Energy modeling approach to the global energy-mineral nexus: Exploring metal requirements and the well-below 2 °C target with 100 percent renewable energy," Applied Energy, Elsevier, vol. 225(C), pages 1158-1175.
    3. Sverdrup, Harald U. & Ragnarsdottir, Kristin Vala, 2016. "A system dynamics model for platinum group metal supply, market price, depletion of extractable amounts, ore grade, recycling and stocks-in-use," Resources, Conservation & Recycling, Elsevier, vol. 114(C), pages 130-152.
    4. Jones, Ben & Elliott, Robert J.R. & Nguyen-Tien, Viet, 2020. "The EV revolution: The road ahead for critical raw materials demand," Applied Energy, Elsevier, vol. 280(C).
    5. Taelim Choi & Randall W. Jackson & Nancey Green Leigh & Christa D. Jensen, 2011. "A Baseline Input—Output Model with Environmental Accounts (IOEA) Applied to E-Waste Recycling," International Regional Science Review, , vol. 34(1), pages 3-33, January.
    6. Stančin, H. & Mikulčić, H. & Wang, X. & Duić, N., 2020. "A review on alternative fuels in future energy system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
    7. Hu, Xueyue & Wang, Chunying & Elshkaki, Ayman, 2024. "Material-energy Nexus: A systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    8. Wang, Chuang & Liu, Mingkun & Li, Zengqun & Xing, Ziwen & Shu, Yue, 2023. "Performance improvement of twin-screw air expander used in PEMFC systems by two-phase expansion," Energy, Elsevier, vol. 273(C).
    9. Hatayama, Hiroki & Daigo, Ichiro & Matsuno, Yasunari & Adachi, Yoshihiro, 2012. "Evolution of aluminum recycling initiated by the introduction of next-generation vehicles and scrap sorting technology," Resources, Conservation & Recycling, Elsevier, vol. 66(C), pages 8-14.
    10. Sun, Li & Sun, Wen & You, Fengqi, 2020. "Core temperature modelling and monitoring of lithium-ion battery in the presence of sensor bias," Applied Energy, Elsevier, vol. 271(C).
    11. Dugoua, Eugenie & Dumas, Marion, 2024. "Coordination dynamics between fuel cell and battery technologies in the transition to clean cars," LSE Research Online Documents on Economics 124029, London School of Economics and Political Science, LSE Library.
    12. Zheng Huang & Laisuo Su & Yunjie Yang & Linsong Gao & Xinyu Liu & Heng Huang & Yubai Li & Yongchen Song, 2023. "Three-Dimensional Simulation on the Effects of Different Parameters and Pt Loading on the Long-Term Performance of Proton Exchange Membrane Fuel Cells," Sustainability, MDPI, vol. 15(4), pages 1-22, February.
    13. Eising, Jan Willem & van Onna, Tom & Alkemade, Floortje, 2014. "Towards smart grids: Identifying the risks that arise from the integration of energy and transport supply chains," Applied Energy, Elsevier, vol. 123(C), pages 448-455.
    14. Cherepovitsyn, Alexey & Solovyova, Victoria & Dmitrieva, Diana, 2023. "New challenges for the sustainable development of the rare-earth metals sector in Russia: Transforming industrial policies," Resources Policy, Elsevier, vol. 81(C).
    15. Milovantseva, Natalia & Fitzpatrick, Colin, 2015. "Barriers to electronics reuse of transboundary e-waste shipment regulations: An evaluation based on industry experiences," Resources, Conservation & Recycling, Elsevier, vol. 102(C), pages 170-177.
    16. Lucio Ciabattoni & Stefano Cardarelli & Marialaura Di Somma & Giorgio Graditi & Gabriele Comodi, 2021. "A Novel Open-Source Simulator Of Electric Vehicles in a Demand-Side Management Scenario," Energies, MDPI, vol. 14(6), pages 1-16, March.
    17. Géremi Gilson Dranka & Paula Ferreira, 2020. "Electric Vehicles and Biofuels Synergies in the Brazilian Energy System," Energies, MDPI, vol. 13(17), pages 1-22, August.
    18. Matthew S. Brown & Louis Somma & Melissa Mendoza & Yeonsik Noh & Gretchen J. Mahler & Ahyeon Koh, 2022. "Upcycling Compact Discs for Flexible and Stretchable Bioelectronic Applications," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    19. Nadia Belmonte & Carlo Luetto & Stefano Staulo & Paola Rizzi & Marcello Baricco, 2017. "Case Studies of Energy Storage with Fuel Cells and Batteries for Stationary and Mobile Applications," Challenges, MDPI, vol. 8(1), pages 1-15, March.
    20. Youssef Amry & Elhoussin Elbouchikhi & Franck Le Gall & Mounir Ghogho & Soumia El Hani, 2022. "Electric Vehicle Traction Drives and Charging Station Power Electronics: Current Status and Challenges," Energies, MDPI, vol. 15(16), pages 1-30, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jresou:v:10:y:2021:i:9:p:93-:d:639449. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.