IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v144y2018icp587-593.html
   My bibliography  Save this article

A bipolar passive DMFC stack for portable applications

Author

Listed:
  • Wang, Luwen
  • Yuan, Zhaoxia
  • Wen, Fei
  • Cheng, Yuhua
  • Zhang, Yufeng
  • Wang, Gaofeng

Abstract

A bipolar passive direct methanol fuel cell (DMFC) stack for portable applications is designed, fabricated and tested. Stainless steel sheet is chosen to fabricate the current collectors by using the traditional wire cutting and laser beam cutting techniques. A 3.5 μm Au layer is deposited on the current collectors using electroplating method to prevent electrochemical corrosion. A novel design of the current collectors is proposed, which makes internal and external electrical connections be seamlessly integrated so that the resistance loss can be reduced. The maximum power density of the passive stack is 18.7 mW cm−2 at 3 M methanol concentration. The effect of the passive DMFC stack placement mode is studied. The results indicate that the passive DMFC stack in mode B (vertical cathode air channels) exhibits better and more stable performance than its counterpart in mode A (parallel cathode air channels) in discharging of high currents. Finally, the bipolar passive DMFC stack proves its good performance in powering the experimental fan in 100 days while performance deterioration behaviour is also detected.

Suggested Citation

  • Wang, Luwen & Yuan, Zhaoxia & Wen, Fei & Cheng, Yuhua & Zhang, Yufeng & Wang, Gaofeng, 2018. "A bipolar passive DMFC stack for portable applications," Energy, Elsevier, vol. 144(C), pages 587-593.
  • Handle: RePEc:eee:energy:v:144:y:2018:i:c:p:587-593
    DOI: 10.1016/j.energy.2017.12.039
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217320595
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.12.039?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Carton, J.G. & Olabi, A.G., 2010. "Design of experiment study of the parameters that affect performance of three flow plate configurations of a proton exchange membrane fuel cell," Energy, Elsevier, vol. 35(7), pages 2796-2806.
    2. Munjewar, Seema S. & Thombre, Shashikant B. & Mallick, Ranjan K., 2017. "Approaches to overcome the barrier issues of passive direct methanol fuel cell – Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1087-1104.
    3. Andersson, M. & Beale, S.B. & Espinoza, M. & Wu, Z. & Lehnert, W., 2016. "A review of cell-scale multiphase flow modeling, including water management, in polymer electrolyte fuel cells," Applied Energy, Elsevier, vol. 180(C), pages 757-778.
    4. Carton, J.G. & Lawlor, V. & Olabi, A.G. & Hochenauer, C. & Zauner, G., 2012. "Water droplet accumulation and motion in PEM (Proton Exchange Membrane) fuel cell mini-channels," Energy, Elsevier, vol. 39(1), pages 63-73.
    5. Wang, Luwen & He, Mingyan & Hu, Yue & Zhang, Yufeng & Liu, Xiaowei & Wang, Gaofeng, 2015. "A “4-cell” modular passive DMFC (direct methanol fuel cell) stack for portable applications," Energy, Elsevier, vol. 82(C), pages 229-235.
    6. Wang, Luwen & Zhang, Yufeng & An, Zijian & Huang, Siteng & Zhou, Zhiping & Liu, Xiaowei, 2013. "Non-isothermal modeling of a small passive direct methanol fuel cell in vertical operation with anode natural convection effect," Energy, Elsevier, vol. 58(C), pages 283-295.
    7. Fang, Shuo & Zhang, Yufeng & Zou, Yuezhang & Sang, Shengtian & Liu, Xiaowei, 2017. "Structural design and analysis of a passive DMFC supplied with concentrated methanol solution," Energy, Elsevier, vol. 128(C), pages 50-61.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fang, Shuo & Song, Nan & Liu, Yuntao & Zhao, Chunhui & Wang, Ying, 2024. "Comprehensive energy conversion efficiency analysis of micro direct methanol fuel cell stack based on polarization theory," Energy, Elsevier, vol. 287(C).
    2. Yang, Qinwen & Gao, Bin & Cheng, Qiang & Xiao, Gang & Meng, Min, 2022. "Adaptive control strategy for power output stability in long-time operation of fuel cells," Energy, Elsevier, vol. 238(PA).
    3. Fang, Shuo & Song, Nan & Liu, Yuntao & Zhou, Chaoyang & Zhao, Chunhui & Wang, Yun, 2023. "Oscillator design for high efficiency DC-DC of micro direct methanol fuel cell," Energy, Elsevier, vol. 284(C).
    4. Sharifi, Shima & Rahimi, Rahbar & Mohebbi-Kalhori, Davod & Colpan, C. Ozgur, 2020. "Coupled computational fluid dynamics-response surface methodology to optimize direct methanol fuel cell performance for greener energy generation," Energy, Elsevier, vol. 198(C).
    5. Li, Yang & Zhang, Xuelin & Yuan, Weijian & Zhang, Yufeng & Liu, Xiaowei, 2018. "A novel CO2 gas removal design for a micro passive direct methanol fuel cell," Energy, Elsevier, vol. 157(C), pages 599-607.
    6. Ke, Yuzhi & Yuan, Wei & Zhou, Feikun & Guo, Wenwen & Li, Jinguang & Zhuang, Ziyi & Su, Xiaoqing & Lu, Biaowu & Zhao, Yonghao & Tang, Yong & Chen, Yu & Song, Jianli, 2021. "A critical review on surface-pattern engineering of nafion membrane for fuel cell applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    7. Hao, Wenbin & Ma, Hongyan & Sun, Guoxing & Li, Zongjin, 2019. "Magnesia phosphate cement composite bipolar plates for passive type direct methanol fuel cells," Energy, Elsevier, vol. 168(C), pages 80-87.
    8. Abdelkareem, Mohammad Ali & Allagui, Anis & Sayed, Enas Taha & El Haj Assad, M. & Said, Zafar & Elsaid, Khaled, 2019. "Comparative analysis of liquid versus vapor-feed passive direct methanol fuel cells," Renewable Energy, Elsevier, vol. 131(C), pages 563-584.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alipour Najmi, Ali & Rowshanzamir, Soosan & Parnian, Mohammad Javad, 2016. "Investigation of NaOH concentration effect in injected fuel on the performance of passive direct methanol alkaline fuel cell with modified cation exchange membrane," Energy, Elsevier, vol. 94(C), pages 589-599.
    2. Alipour Najmi, Ali & Rowshanzamir, Soosan & Parnian, Mohammad Javad, 2016. "Study of physicochemical characterization of potassium-doped Nafion117 membrane and performance evaluation of air-breathing fuel cell in different alkali-methanol solutions," Energy, Elsevier, vol. 113(C), pages 1090-1098.
    3. Wang, Luwen & He, Mingyan & Hu, Yue & Zhang, Yufeng & Liu, Xiaowei & Wang, Gaofeng, 2015. "A “4-cell” modular passive DMFC (direct methanol fuel cell) stack for portable applications," Energy, Elsevier, vol. 82(C), pages 229-235.
    4. Hao, Wenbin & Ma, Hongyan & Sun, Guoxing & Li, Zongjin, 2019. "Magnesia phosphate cement composite bipolar plates for passive type direct methanol fuel cells," Energy, Elsevier, vol. 168(C), pages 80-87.
    5. Yuan, Zhenyu & Zhang, Manna & Zuo, Kaiyuan & Ren, Yongqiang, 2018. "The effect of gravity on inner transport and cell performance in passive micro direct methanol fuel cell," Energy, Elsevier, vol. 150(C), pages 28-37.
    6. Parnian, Mohammad Javad & Rowshanzamir, Soosan & Gashoul, Fatemeh, 2017. "Comprehensive investigation of physicochemical and electrochemical properties of sulfonated poly (ether ether ketone) membranes with different degrees of sulfonation for proton exchange membrane fuel ," Energy, Elsevier, vol. 125(C), pages 614-628.
    7. Okur, Osman & İyigün Karadağ, Çiğdem & Boyacı San, Fatma Gül & Okumuş, Emin & Behmenyar, Gamze, 2013. "Optimization of parameters for hot-pressing manufacture of membrane electrode assembly for PEM (polymer electrolyte membrane fuel cells) fuel cell," Energy, Elsevier, vol. 57(C), pages 574-580.
    8. Abdollahzadeh, M. & Ribeirinha, P. & Boaventura, M. & Mendes, A., 2018. "Three-dimensional modeling of PEMFC with contaminated anode fuel," Energy, Elsevier, vol. 152(C), pages 939-959.
    9. Yuan, Zhenyu & Yang, Jie & Li, Xiaoyang & Wang, Shikai, 2016. "The micro-scale analysis of the micro direct methanol fuel cell," Energy, Elsevier, vol. 100(C), pages 10-17.
    10. Wang, Junye, 2015. "Theory and practice of flow field designs for fuel cell scaling-up: A critical review," Applied Energy, Elsevier, vol. 157(C), pages 640-663.
    11. Fang, Shuo & Zhang, Yufeng & Ma, Zezhong & Sang, Shengtian & Liu, Xiaowei, 2016. "Systemic modeling and analysis of DMFC stack for behavior prediction in system-level application," Energy, Elsevier, vol. 112(C), pages 1015-1023.
    12. Fang, Shuo & Song, Nan & Liu, Yuntao & Zhao, Chunhui & Wang, Ying, 2024. "Comprehensive energy conversion efficiency analysis of micro direct methanol fuel cell stack based on polarization theory," Energy, Elsevier, vol. 287(C).
    13. Perng, Shiang-Wuu & Wu, Horng-Wen & Shih, Gin-Jang, 2015. "Effect of prominent gas diffusion layer (GDL) on non-isothermal transport characteristics and cell performance of a proton exchange membrane fuel cell (PEMFC)," Energy, Elsevier, vol. 88(C), pages 126-138.
    14. Rahnavard, Aylin & Rowshanzamir, Soosan & Parnian, Mohammad Javad & Amirkhanlou, Gholam Reza, 2015. "The effect of sulfonated poly (ether ether ketone) as the electrode ionomer for self-humidifying nanocomposite proton exchange membrane fuel cells," Energy, Elsevier, vol. 82(C), pages 746-757.
    15. Tsai, Shang-Wen & Chen, Yong-Song, 2017. "A mathematical model to study the energy efficiency of a proton exchange membrane fuel cell with a dead-ended anode," Applied Energy, Elsevier, vol. 188(C), pages 151-159.
    16. Yuan, Zhenyu & Yang, Jie & Zhang, Yufeng & Wang, Shikai & Xu, Tingnian, 2015. "Mass transport optimization in the anode diffusion layer of a micro direct methanol fuel cell," Energy, Elsevier, vol. 93(P1), pages 599-605.
    17. Min, Xiaoteng & Xia, Junjie & Zhang, Xiongwen & Ding, Kunpeng, 2022. "Study on the output performance of the proton exchange membrane fuel cells using print circuit board," Renewable Energy, Elsevier, vol. 197(C), pages 359-370.
    18. Díaz, Manuel Antonio & Iranzo, Alfredo & Rosa, Felipe & Isorna, Fernando & López, Eduardo & Bolivar, Juan Pedro, 2015. "Effect of carbon dioxide on the contamination of low temperature and high temperature PEM (polymer electrolyte membrane) fuel cells. Influence of temperature, relative humidity and analysis of regener," Energy, Elsevier, vol. 90(P1), pages 299-309.
    19. An, Myung-Gi & Mehmood, Asad & Hwang, Jinyeon & Ha, Heung Yong, 2016. "A novel method of methanol concentration control through feedback of the amplitudes of output voltage fluctuations for direct methanol fuel cells," Energy, Elsevier, vol. 100(C), pages 217-226.
    20. Oh, Taek Hyun & Jang, Bosun & Kwon, Sejin, 2015. "Estimating the energy density of direct borohydride–hydrogen peroxide fuel cell systems for air-independent propulsion applications," Energy, Elsevier, vol. 90(P1), pages 980-986.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:144:y:2018:i:c:p:587-593. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.