Polarization analysis of a micro direct methanol fuel cell stack based on Debye-Hückel ionic atmosphere theory
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2021.119907
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Sharifi, Shima & Rahimi, Rahbar & Mohebbi-Kalhori, Davod & Colpan, C. Ozgur, 2020. "Coupled computational fluid dynamics-response surface methodology to optimize direct methanol fuel cell performance for greener energy generation," Energy, Elsevier, vol. 198(C).
- Hosseini, Mir Ghasem & Mahmoodi, Raana & Daneshvari-Esfahlan, Vahid, 2018. "Ni@Pd core-shell nanostructure supported on multi-walled carbon nanotubes as efficient anode nanocatalysts for direct methanol fuel cells with membrane electrode assembly prepared by catalyst coated m," Energy, Elsevier, vol. 161(C), pages 1074-1084.
- Wang, Luwen & Zhang, Yufeng & An, Zijian & Huang, Siteng & Zhou, Zhiping & Liu, Xiaowei, 2013. "Non-isothermal modeling of a small passive direct methanol fuel cell in vertical operation with anode natural convection effect," Energy, Elsevier, vol. 58(C), pages 283-295.
- Yuan, Zhenyu & Zhang, Manna & Zuo, Kaiyuan & Ren, Yongqiang, 2018. "The effect of gravity on inner transport and cell performance in passive micro direct methanol fuel cell," Energy, Elsevier, vol. 150(C), pages 28-37.
- García-Salaberri, Pablo A. & Vera, Marcos, 2016. "On the effect of operating conditions in liquid-feed direct methanol fuel cells: A multiphysics modeling approach," Energy, Elsevier, vol. 113(C), pages 1265-1287.
- Ismail, A. & Kamarudin, S.K. & Daud, W.R.W. & Masdar, S. & Hasran, U.A., 2018. "Development of 2D multiphase non-isothermal mass transfer model for DMFC system," Energy, Elsevier, vol. 152(C), pages 263-276.
- Sudaroli, B. Mullai & Kolar, Ajit Kumar, 2016. "An experimental study on the effect of membrane thickness and PTFE (polytetrafluoroethylene) loading on methanol crossover in direct methanol fuel cell," Energy, Elsevier, vol. 98(C), pages 204-214.
- Fang, Shuo & Zhang, Yufeng & Zou, Yuezhang & Sang, Shengtian & Liu, Xiaowei, 2017. "Structural design and analysis of a passive DMFC supplied with concentrated methanol solution," Energy, Elsevier, vol. 128(C), pages 50-61.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Fang, Shuo & Song, Nan & Liu, Yuntao & Zhao, Chunhui & Wang, Ying, 2024. "Comprehensive energy conversion efficiency analysis of micro direct methanol fuel cell stack based on polarization theory," Energy, Elsevier, vol. 287(C).
- Fang, Shuo & Song, Nan & Liu, Yuntao & Zhou, Chaoyang & Zhao, Chunhui & Wang, Yun, 2023. "Oscillator design for high efficiency DC-DC of micro direct methanol fuel cell," Energy, Elsevier, vol. 284(C).
- Li, Yanghui & Hu, Wenkang & Tang, Haoran & Wu, Peng & Liu, Tao & You, Zeshao & Yu, Tao & Song, Yongchen, 2023. "Mechanical properties of the interstratified hydrate-bearing sediment in permafrost zones," Energy, Elsevier, vol. 282(C).
- Zhao, Lei & Hong, Jichao & Xie, Jiaping & Jiang, Shangfeng & Wei, Xuezhe & Ming, Pingwen & Dai, Haifeng, 2023. "Investigation of local sensitivity for vehicle-oriented fuel cell stacks based on electrochemical impedance spectroscopy," Energy, Elsevier, vol. 262(PA).
- Maria H. de Sá & Alexandra M. F. R. Pinto & Vânia B. Oliveira, 2022. "Passive Small Direct Alcohol Fuel Cells for Low-Power Portable Applications: Assessment Based on Innovative Increments since 2018," Energies, MDPI, vol. 15(10), pages 1-48, May.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Fang, Shuo & Song, Nan & Liu, Yuntao & Zhao, Chunhui & Wang, Ying, 2024. "Comprehensive energy conversion efficiency analysis of micro direct methanol fuel cell stack based on polarization theory," Energy, Elsevier, vol. 287(C).
- Fang, Shuo & Song, Nan & Liu, Yuntao & Zhou, Chaoyang & Zhao, Chunhui & Wang, Yun, 2023. "Oscillator design for high efficiency DC-DC of micro direct methanol fuel cell," Energy, Elsevier, vol. 284(C).
- Zhang, Rongji & Cao, Jiamu & Wang, Weiqi & Zhou, Jing & Chen, Junyu & Chen, Liang & Chen, Weiping & Zhang, Yufeng, 2023. "An improved strategy of passive micro direct methanol fuel cell: Mass transport mechanism optimization dominated by a single hydrophilic layer," Energy, Elsevier, vol. 274(C).
- Abdelkareem, Mohammad Ali & Sayed, Enas Taha & Nakagawa, Nobuyoshi, 2020. "Significance of diffusion layers on the performance of liquid and vapor feed passive direct methanol fuel cells," Energy, Elsevier, vol. 209(C).
- Fang, Shuo & Zhang, Yufeng & Zou, Yuezhang & Sang, Shengtian & Liu, Xiaowei, 2017. "Structural design and analysis of a passive DMFC supplied with concentrated methanol solution," Energy, Elsevier, vol. 128(C), pages 50-61.
- Prapainainar, Paweena & Du, Zehui & Theampetch, Apichaya & Prapainainar, Chaiwat & Kongkachuichay, Paisan & Holmes, Stuart M., 2020. "Properties and DMFC performance of nafion/mordenite composite membrane fabricated by solution-casting method with different solvent ratio," Energy, Elsevier, vol. 190(C).
- Yang, Chii-Rong & Lu, Chang-Wei & Fu, Pin-Chi & Cheng, Chia & Chiou, Yuang-Cherng & Lee, Rong-Tsong & Tseng, Shih-Feng, 2020. "Performance evaluation of μDMFCs based on porous-silicon electrodes and methanol modification," Energy, Elsevier, vol. 192(C).
- Yang, Qinwen & Xiao, Gang & Li, Lexi & Che, Mengjie & Hu, Xu-Qu & Meng, Min, 2021. "Collaborative design of multi-type parameters for design and operational stage matching in fuel cells," Renewable Energy, Elsevier, vol. 175(C), pages 1101-1110.
- Yuan, Zhenyu & Zhang, Manna & Zuo, Kaiyuan & Ren, Yongqiang, 2018. "The effect of gravity on inner transport and cell performance in passive micro direct methanol fuel cell," Energy, Elsevier, vol. 150(C), pages 28-37.
- Fang, Shuo & Zhang, Yufeng & Ma, Zezhong & Zou, Yuezhang & Liu, Xiaowei, 2016. "Development of a micro direct methanol fuel cell with heat control," Energy, Elsevier, vol. 116(P1), pages 978-985.
- Wang, Luwen & Yuan, Zhaoxia & Wen, Fei & Cheng, Yuhua & Zhang, Yufeng & Wang, Gaofeng, 2018. "A bipolar passive DMFC stack for portable applications," Energy, Elsevier, vol. 144(C), pages 587-593.
- Qinwen Yang & Gang Xiao & Tao Liu & Bin Gao & Shujun Chen, 2022. "Efficient Prediction of Fuel Cell Performance Using Global Modeling Method," Energies, MDPI, vol. 15(22), pages 1-14, November.
- Maria H. de Sá & Alexandra M. F. R. Pinto & Vânia B. Oliveira, 2022. "Passive Small Direct Alcohol Fuel Cells for Low-Power Portable Applications: Assessment Based on Innovative Increments since 2018," Energies, MDPI, vol. 15(10), pages 1-48, May.
- Fang, Shuo & Zhang, Yufeng & Ma, Zezhong & Sang, Shengtian & Liu, Xiaowei, 2016. "Systemic modeling and analysis of DMFC stack for behavior prediction in system-level application," Energy, Elsevier, vol. 112(C), pages 1015-1023.
- Pourali, Mostafa & Esfahani, Javad Abolfazli, 2022. "Performance analysis of a micro-scale integrated hydrogen production system by analytical approach, machine learning, and response surface methodology," Energy, Elsevier, vol. 255(C).
- Ke, Yuzhi & Zhang, Baotong & Bai, Yafeng & Yuan, Wei & Li, Jinguang & Liu, Ziang & Su, Xiaoqing & Zhang, Shiwei & Ding, Xinrui & Wan, Zhenping & Tang, Yong & Zhou, Feikun, 2023. "Bubble-derived contour regeneration of flow channel by in situ tracking for direct methanol fuel cells," Energy, Elsevier, vol. 264(C).
- Alipour Najmi, Ali & Rowshanzamir, Soosan & Parnian, Mohammad Javad, 2016. "Investigation of NaOH concentration effect in injected fuel on the performance of passive direct methanol alkaline fuel cell with modified cation exchange membrane," Energy, Elsevier, vol. 94(C), pages 589-599.
- Wang, Luwen & He, Mingyan & Hu, Yue & Zhang, Yufeng & Liu, Xiaowei & Wang, Gaofeng, 2015. "A “4-cell” modular passive DMFC (direct methanol fuel cell) stack for portable applications," Energy, Elsevier, vol. 82(C), pages 229-235.
- Sharifi, Shima & Rahimi, Rahbar & Mohebbi-Kalhori, Davod & Colpan, C. Ozgur, 2020. "Coupled computational fluid dynamics-response surface methodology to optimize direct methanol fuel cell performance for greener energy generation," Energy, Elsevier, vol. 198(C).
- Chen, Fengxiang & Chi, Xuncheng & Wei, Wei & Mo, Tiande & Li, Yu, 2023. "Model-based observer for direct methanol fuel cell concentration estimation by using second-order sliding-mode algorithm," Energy, Elsevier, vol. 263(PD).
More about this item
Keywords
Micro direct methanol fuel cell stack model; Polarization analysis; Polarization coupling; Energy conversion efficiency analysis;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:222:y:2021:i:c:s0360544221001560. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.