IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i20p6608-d655539.html
   My bibliography  Save this article

Performance Optimization of μ DMFC with Foamed Stainless Steel Cathode Current Collector

Author

Listed:
  • Zhengang Zhao

    (Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650500, China
    Yunnan Key Laboratory of Computer Technology Applications, Kunming 650500, China)

  • Fan Zhang

    (Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650500, China)

  • Yanhui Zhang

    (Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650500, China)

  • Dacheng Zhang

    (Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650500, China
    Yunnan Key Laboratory of Computer Technology Applications, Kunming 650500, China)

Abstract

The micro direct methanol fuel cell ( μ DMFC) has attracted more and more attention in the field of new energy due to its simple structure, easy operation, and eco-friendly byproducts. In a μ DMFC’s structure, the current collector plays an essential role in collecting the conduction current, and the rational distribution of gas and water. The choice of its material and flow fields would significantly impact the μ DMFC’s performance. To this end, four different types of cathode current collector were prepared in this study. The materials selected were stainless steel (SS) and foam stainless steel (FSS), with the flow fields of hole-type and grid-type. The performance of the μ DMFC with different types of cathode current collector was investigated by using polarization curves, electrochemical impedance spectroscopy (EIS), and discharging. The experimental results show that the maximum power density of μ DMFC of the hole-type FSS cathode current collector is 49.53 mW/cm 2 at 70 °C in the methanol solution of 1 mol/L, which is 115.72% higher than that of the SS collector. The maximum power density of the μ DMFC with the grid-type FSS collector is 22.60 mW/cm 2 , which is 27.39% higher than that of the SS collector. The total impedance of the μ DMFC of the FSS collector is significantly lower than that of the μ DMFC of the SS collector, and the total impedance of the μ DMFC with the hole-type flow field collector is lower than that of the grid-type flow field. The discharging of μ DMFC with the hole-type FSS collector reaches its optimal value at 70 °C in the methanol solution of 1 mol/L.

Suggested Citation

  • Zhengang Zhao & Fan Zhang & Yanhui Zhang & Dacheng Zhang, 2021. "Performance Optimization of μ DMFC with Foamed Stainless Steel Cathode Current Collector," Energies, MDPI, vol. 14(20), pages 1-13, October.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:20:p:6608-:d:655539
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/20/6608/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/20/6608/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yuan, Wei & Deng, Jun & Zhang, Zhaochun & Yang, Xiaojun & Tang, Yong, 2014. "Study on operational aspects of a passive direct methanol fuel cell incorporating an anodic methanol barrier," Renewable Energy, Elsevier, vol. 62(C), pages 640-648.
    2. Xue, Rui & Zhang, Yufeng & Liu, Xiaowei, 2017. "A novel cathode gas diffusion layer for water management of passive μ-DMFC," Energy, Elsevier, vol. 139(C), pages 535-541.
    3. Zhang, Yufeng & Xue, Rui & Zhang, Xuelin & Song, Jiaying & Liu, Xiaowei, 2015. "rGO deposited in stainless steel fiber felt as mass transfer barrier layer for μ-DMFC," Energy, Elsevier, vol. 91(C), pages 1081-1086.
    4. Yuan, Wei & Tang, Yong & Yang, Xiaojun & Wan, Zhenping, 2012. "Porous metal materials for polymer electrolyte membrane fuel cells – A review," Applied Energy, Elsevier, vol. 94(C), pages 309-329.
    5. Braz, B.A. & Oliveira, V.B. & Pinto, A.M.F.R., 2020. "Optimization of a passive direct methanol fuel cell with different current collector materials," Energy, Elsevier, vol. 208(C).
    6. Yuan, Zhenyu & Fu, Wenting & Zhao, Yang & Li, Zipeng & Zhang, Yufeng & Liu, Xiaowei, 2013. "Investigation of μDMFC (micro direct methanol fuel cell) with self-adaptive flow rate," Energy, Elsevier, vol. 55(C), pages 1152-1158.
    7. Munjewar, Seema S. & Thombre, Shashikant B., 2019. "Effect of current collector roughness on performance of passive direct methanol fuel cell," Renewable Energy, Elsevier, vol. 138(C), pages 272-283.
    8. Sharifi, Shima & Rahimi, Rahbar & Mohebbi-Kalhori, Davod & Colpan, C. Ozgur, 2020. "Coupled computational fluid dynamics-response surface methodology to optimize direct methanol fuel cell performance for greener energy generation," Energy, Elsevier, vol. 198(C).
    9. Beatriz A. Braz & Vânia B. Oliveira & Alexandra M. F. R. Pinto, 2020. "Experimental Evaluation of the Effect of the Anode Diffusion Layer Properties on the Performance of a Passive Direct Methanol Fuel Cell," Energies, MDPI, vol. 13(19), pages 1-11, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maria H. de Sá & Alexandra M. F. R. Pinto & Vânia B. Oliveira, 2022. "Passive Small Direct Alcohol Fuel Cells for Low-Power Portable Applications: Assessment Based on Innovative Increments since 2018," Energies, MDPI, vol. 15(10), pages 1-48, May.
    2. Fang, Shuo & Zhang, Yufeng & Zou, Yuezhang & Sang, Shengtian & Liu, Xiaowei, 2017. "Structural design and analysis of a passive DMFC supplied with concentrated methanol solution," Energy, Elsevier, vol. 128(C), pages 50-61.
    3. Fang, Shuo & Zhang, Yufeng & Ma, Zezhong & Sang, Shengtian & Liu, Xiaowei, 2016. "Systemic modeling and analysis of DMFC stack for behavior prediction in system-level application," Energy, Elsevier, vol. 112(C), pages 1015-1023.
    4. Fang, Shuo & Song, Nan & Liu, Yuntao & Zhao, Chunhui & Wang, Ying, 2024. "Comprehensive energy conversion efficiency analysis of micro direct methanol fuel cell stack based on polarization theory," Energy, Elsevier, vol. 287(C).
    5. Zhang, Rongji & Cao, Jiamu & Wang, Weiqi & Zhou, Jing & Chen, Junyu & Chen, Liang & Chen, Weiping & Zhang, Yufeng, 2023. "An improved strategy of passive micro direct methanol fuel cell: Mass transport mechanism optimization dominated by a single hydrophilic layer," Energy, Elsevier, vol. 274(C).
    6. Fang, Shuo & Zhang, Yufeng & Ma, Zezhong & Zou, Yuezhang & Liu, Xiaowei, 2016. "Development of a micro direct methanol fuel cell with heat control," Energy, Elsevier, vol. 116(P1), pages 978-985.
    7. Abdelkareem, Mohammad Ali & Allagui, Anis & Sayed, Enas Taha & El Haj Assad, M. & Said, Zafar & Elsaid, Khaled, 2019. "Comparative analysis of liquid versus vapor-feed passive direct methanol fuel cells," Renewable Energy, Elsevier, vol. 131(C), pages 563-584.
    8. Bae, Suk Joo & Kim, Seong-Joon & Lee, Jin-Hwa & Song, Inseob & Kim, Nam-In & Seo, Yongho & Kim, Ki Buem & Lee, Naesung & Park, Jun-Young, 2014. "Degradation pattern prediction of a polymer electrolyte membrane fuel cell stack with series reliability structure via durability data of single cells," Applied Energy, Elsevier, vol. 131(C), pages 48-55.
    9. Solmaz, Hamit & Ardebili, Seyed Mohammad Safieddin & Calam, Alper & Yılmaz, Emre & İpci, Duygu, 2021. "Prediction of performance and exhaust emissions of a CI engine fueled with multi-wall carbon nanotube doped biodiesel-diesel blends using response surface method," Energy, Elsevier, vol. 227(C).
    10. Fang, Shuo & Liu, Yuntao & Zhao, Chunhui & Huang, Lilian & Zhong, Zhi & Wang, Yun, 2021. "Polarization analysis of a micro direct methanol fuel cell stack based on Debye-Hückel ionic atmosphere theory," Energy, Elsevier, vol. 222(C).
    11. Chen, Daifen & Zeng, Qice & Su, Shichuan & Bi, Wuxi & Ren, Zhiqiang, 2013. "Geometric optimization of a 10-cell modular planar solid oxide fuel cell stack manifold," Applied Energy, Elsevier, vol. 112(C), pages 1100-1107.
    12. Wang, Aoyu & Yuan, Wei & Huang, Shimin & Tang, Yong & Chen, Yu, 2017. "Structural effects of expanded metal mesh used as a flow field for a passive direct methanol fuel cell," Applied Energy, Elsevier, vol. 208(C), pages 184-194.
    13. Bao, Zhiming & Niu, Zhiqiang & Jiao, Kui, 2020. "Gas distribution and droplet removal of metal foam flow field for proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 280(C).
    14. Zhao, Jian & Shahgaldi, Samaneh & Alaefour, Ibrahim & Xu, Qian & Li, Xianguo, 2018. "Gas permeability of catalyzed electrodes in polymer electrolyte membrane fuel cells," Applied Energy, Elsevier, vol. 209(C), pages 203-210.
    15. Jiao, Kui & Bachman, John & Zhou, Yibo & Park, Jae Wan, 2014. "Effect of induced cross flow on flow pattern and performance of proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 115(C), pages 75-82.
    16. Gasia, Jaume & Miró, Laia & Cabeza, Luisa F., 2016. "Materials and system requirements of high temperature thermal energy storage systems: A review. Part 2: Thermal conductivity enhancement techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1584-1601.
    17. Pourali, Mostafa & Esfahani, Javad Abolfazli, 2022. "Performance analysis of a micro-scale integrated hydrogen production system by analytical approach, machine learning, and response surface methodology," Energy, Elsevier, vol. 255(C).
    18. Baik, Kyung Don & Seo, Il Sung, 2018. "Metallic bipolar plate with a multi-hole structure in the rib regions for polymer electrolyte membrane fuel cells," Applied Energy, Elsevier, vol. 212(C), pages 333-339.
    19. Yuan, Wei & Zhang, Xiaoqing & Zhang, Shiwei & Hu, Jinyi & Li, Zongtao & Tang, Yong, 2015. "Lightweight current collector based on printed-circuit-board technology and its structural effects on the passive air-breathing direct methanol fuel cell," Renewable Energy, Elsevier, vol. 81(C), pages 664-670.
    20. Jung, Guo-Bin & Tzeng, Wei-Jen & Jao, Ting-Chu & Liu, Yu-Hsu & Yeh, Chia-Chen, 2013. "Investigation of porous carbon and carbon nanotube layer for proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 101(C), pages 457-464.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:20:p:6608-:d:655539. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.