IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v219y2023ip2s0960148123015070.html
   My bibliography  Save this article

Reliable and precise determination of energy conversion in fuel cells using an integrable energy model

Author

Listed:
  • Junxing, Liu
  • Chagshi, Liu

Abstract

Fuel cells serve as devices that directly convert chemical energy into electricity via electrochemical reactions. Assessing and characterizing fuel cell performance typically involves the creation of polarization curves. Nevertheless, currently employed polarization curve models have shown limited effectiveness when it comes to evaluating the conversion of chemical energy into electrical energy. To address this knowledge gap, this study has developed a concise and integrable energy model of fuel cells. This model aims to predict output voltage with a high degree of reliability and precision, relying on current density. The validity of this model was through experimentation, involving a dataset of twenty results. Fitting outcomes from these experiments demonstrated the capacity of the proposed model to faithfully replicate experimental curves. Furthermore, this model permits the dependable and precise calculation of fuel cell energy density, contingent upon optimal model parameters. In addition, this study has established quantitative correlations between the inherent characteristics of fuel cells and their energy density. Lastly, the proposed model facilitates the interpolation and extrapolation of polarization curves that may not be attainable through direct experimentation. This capability is achieved through the utilization of a secondary model that quantitatively associates the intrinsic attributes of fuel cells with optimal model coefficients.

Suggested Citation

  • Junxing, Liu & Chagshi, Liu, 2023. "Reliable and precise determination of energy conversion in fuel cells using an integrable energy model," Renewable Energy, Elsevier, vol. 219(P2).
  • Handle: RePEc:eee:renene:v:219:y:2023:i:p2:s0960148123015070
    DOI: 10.1016/j.renene.2023.119592
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123015070
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.119592?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tamakloe, R.Y., 2015. "Effect of COD and H2O2 concentration on DC-MFC," Renewable Energy, Elsevier, vol. 83(C), pages 1299-1304.
    2. Min, Xiaoteng & Xia, Junjie & Zhang, Xiongwen & Ding, Kunpeng, 2022. "Study on the output performance of the proton exchange membrane fuel cells using print circuit board," Renewable Energy, Elsevier, vol. 197(C), pages 359-370.
    3. Gentil, Tuani C. & Pinheiro, Victor S. & Souza, Felipe M. & de Araújo, Marcos L. & Mandelli, Dalmo & Batista, Bruno L. & dos Santos, Mauro C., 2021. "Acetol as a high-performance molecule for oxidation in alkaline direct liquid fuel cell," Renewable Energy, Elsevier, vol. 165(P1), pages 37-42.
    4. Kakaei, Karim & Rahnavardi, Mohammad, 2021. "Synthesis of nitrogen-doped reduced graphene oxide and its decoration with high efficiency palladium nanoparticles for direct ethanol fuel cell," Renewable Energy, Elsevier, vol. 163(C), pages 1277-1286.
    5. Munjewar, Seema S. & Thombre, Shashikant B., 2019. "Effect of current collector roughness on performance of passive direct methanol fuel cell," Renewable Energy, Elsevier, vol. 138(C), pages 272-283.
    6. Wang, Hanqing & Gaillard, Arnaud & Hissel, Daniel, 2019. "A review of DC/DC converter-based electrochemical impedance spectroscopy for fuel cell electric vehicles," Renewable Energy, Elsevier, vol. 141(C), pages 124-138.
    7. Caizán-Juanarena, Leire & Sleutels, Tom & Borsje, Casper & ter Heijne, Annemiek, 2020. "Considerations for application of granular activated carbon as capacitive bioanode in bioelectrochemical systems," Renewable Energy, Elsevier, vol. 157(C), pages 782-792.
    8. Lan, Yang & Changshi, Liu, 2023. "Conductance is responsible for the power conversion efficiency of solar cell," Energy, Elsevier, vol. 278(PB).
    9. Hou, Junbo & Yang, Min & Zhang, Junliang, 2020. "Active and passive fuel recirculation for solid oxide and proton exchange membrane fuel cells," Renewable Energy, Elsevier, vol. 155(C), pages 1355-1371.
    10. Luo, Shijing & Pan, Wending & Wang, Yifei & Zhao, Xiaolong & Wah Leong, Kee & Leung, Dennis Y.C., 2022. "High-performance H2O2 paper fuel cell boosted via electrolyte toning and radical generation," Applied Energy, Elsevier, vol. 323(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Goudarzian, Alireza & Khosravi, Adel & Raeisi, Heidar Ali, 2020. "Analysis of a step-up dc/dc converter with capability of right-half plane zero cancellation," Renewable Energy, Elsevier, vol. 157(C), pages 1156-1170.
    2. Lu, Guolong & Fan, Wenxuan & Lu, Dafeng & Zhao, Taotao & Wu, Qianqian & Liu, Mingxin & Liu, Zhenning, 2024. "Lung-inspired hybrid flow field to enhance PEMFC performance: A case of dual optimization by response surface and artificial intelligence," Applied Energy, Elsevier, vol. 355(C).
    3. Antony Plait & Pierre Saenger & David Bouquain, 2024. "Fuel Cell System Modeling Dedicated to Performance Estimation in the Automotive Context," Energies, MDPI, vol. 17(15), pages 1-15, August.
    4. Ye, Yang & Yue, Yi & Lu, Jianfeng & Ding, Jing & Wang, Weilong & Yan, Jinyue, 2021. "Enhanced hydrogen storage of a LaNi5 based reactor by using phase change materials," Renewable Energy, Elsevier, vol. 180(C), pages 734-743.
    5. Gong, Chengyuan & Tu, Zhengkai & Hwa Chan, Siew, 2023. "A novel flow field design with flow re-distribution for advanced thermal management in Solid oxide fuel cell," Applied Energy, Elsevier, vol. 331(C).
    6. Hao, Xinyang & Salhi, Issam & Laghrouche, Salah & Ait Amirat, Youcef & Djerdir, Abdesslem, 2023. "Multiple inputs multi-phase interleaved boost converter for fuel cell systems applications," Renewable Energy, Elsevier, vol. 204(C), pages 521-531.
    7. Abdelmalek, Samir & Dali, Ali & Bakdi, Azzeddine & Bettayeb, Maamar, 2020. "Design and experimental implementation of a new robust observer-based nonlinear controller for DC-DC buck converters," Energy, Elsevier, vol. 213(C).
    8. Hegazy Rezk & A. G. Olabi & Mohammad Ali Abdelkareem & Hussein M. Maghrabie & Enas Taha Sayed, 2023. "Fuzzy Modelling and Optimization of Yeast-MFC for Simultaneous Wastewater Treatment and Electrical Energy Production," Sustainability, MDPI, vol. 15(3), pages 1-12, January.
    9. Nassef, Ahmed M. & Sayed, Enas T. & Rezk, Hegazy & Inayat, Abrar & Yousef, Bashria A.A. & Abdelkareem, Mohammad A. & Olabi, A.G., 2020. "Developing a fuzzy-model with particle swarm optimization-based for improving the conversion and gasification rate of palm kernel shell," Renewable Energy, Elsevier, vol. 166(C), pages 125-135.
    10. Zhang, Xin & Rahman, Ehsanur, 2022. "Thermodynamic analysis and optimization of a hybrid power system using thermoradiative device to efficiently recover waste heat from alkaline fuel cell," Renewable Energy, Elsevier, vol. 200(C), pages 1240-1250.
    11. Hyewon Yang & Young Jae Han & Jiwon Yu & Sumi Kim & Sugil Lee & Gildong Kim & Chulung Lee, 2022. "Exploring Future Promising Technologies in Hydrogen Fuel Cell Transportation," Sustainability, MDPI, vol. 14(2), pages 1-19, January.
    12. Chen, Kui & Laghrouche, Salah & Djerdir, Abdesslem, 2019. "Degradation model of proton exchange membrane fuel cell based on a novel hybrid method," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    13. Ioan-Sorin Sorlei & Nicu Bizon & Phatiphat Thounthong & Mihai Varlam & Elena Carcadea & Mihai Culcer & Mariana Iliescu & Mircea Raceanu, 2021. "Fuel Cell Electric Vehicles—A Brief Review of Current Topologies and Energy Management Strategies," Energies, MDPI, vol. 14(1), pages 1-29, January.
    14. Vichard, L. & Ravey, A. & Venet, P. & Harel, F. & Pelissier, S. & Hissel, D., 2021. "A method to estimate battery SOH indicators based on vehicle operating data only," Energy, Elsevier, vol. 225(C).
    15. Sun, Lejia & Jia, Jingqi & Wang, QuanLi & Zhang, Yimeng, 2024. "A novel multiphase DC/DC boost converter for interaction of solar energy and hydrogen fuel cell in hybrid electric vehicles," Renewable Energy, Elsevier, vol. 229(C).
    16. Aissa Benhammou & Hamza Tedjini & Mohammed Amine Hartani & Rania M. Ghoniem & Ali Alahmer, 2023. "Accurate and Efficient Energy Management System of Fuel Cell/Battery/Supercapacitor/AC and DC Generators Hybrid Electric Vehicles," Sustainability, MDPI, vol. 15(13), pages 1-27, June.
    17. Antonio Guarino & Giovanni Petrone & Walter Zamboni, 2019. "Improving the Performance of a Dual Kalman Filter for the Identification of PEM Fuel Cells in Impedance Spectroscopy Experiments," Energies, MDPI, vol. 12(17), pages 1-18, September.
    18. Anup Gurung & Bhim Sen Thapa & Seong-Yun Ko & Ebenezer Ashun & Umair Ali Toor & Sang-Eun Oh, 2023. "Denitrification in Microbial Fuel Cells Using Granular Activated Carbon as an Effective Biocathode," Energies, MDPI, vol. 16(2), pages 1-11, January.
    19. Chen, Kui & Laghrouche, Salah & Djerdir, Abdesslem, 2021. "Prognosis of fuel cell degradation under different applications using wavelet analysis and nonlinear autoregressive exogenous neural network," Renewable Energy, Elsevier, vol. 179(C), pages 802-814.
    20. Tiancai Ma & Jiajun Kang & Weikang Lin & Xinru Xu & Yanbo Yang, 2022. "Highly Integrated Online Multi-Channel Electrochemical Impedance Spectroscopy Measurement Device for Fuel Cell Stack," Energies, MDPI, vol. 15(9), pages 1-23, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:219:y:2023:i:p2:s0960148123015070. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.