IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v114y2017ipbp725-732.html
   My bibliography  Save this article

Sulfonated poly(divinylbenzene) and poly(styrene-divinylbenzene) as catalysts for esterification of fatty acids

Author

Listed:
  • de Aguiar, Viviane Marques
  • de Souza, Andrea Luzia F.
  • Galdino, Fernanda S.
  • da Silva, Michelle Martha C.
  • Teixeira, Viviane Gomes
  • Lachter, Elizabeth R.

Abstract

Commercial ion-exchange resins (Amberlyst 35 and Amberlyst 36) and a resin synthetized in the laboratory, sulfonated poly(divinylbenzene) were evaluated as catalysts in the esterification of fatty acids (palmitic and oleic) with alcohols (methanol, ethanol and butanol). The study was developed in order to obtain a high rate of fatty acid conversion. The esterification reactions with fatty acids and methanol presented satisfactory conversion to methyl esters achieving a final conversion over 90% in both palmitic and oleic acid. A sample of waste vegetable oils with a high acid content from the residue of the palm oil and soybean oil refining industry were evaluated in the esterification with methanol. The best results were achieved with the new sulfonic resin, poly(divinylbenzene), which was synthesized in the laboratory and has proved efficient for the reaction in the study. Maximum biodiesel production was achieved from a fatty acid residue of the soybean oil refining industry and methanol (93%) which showed conversions very close to those obtained from their respective fatty acids.

Suggested Citation

  • de Aguiar, Viviane Marques & de Souza, Andrea Luzia F. & Galdino, Fernanda S. & da Silva, Michelle Martha C. & Teixeira, Viviane Gomes & Lachter, Elizabeth R., 2017. "Sulfonated poly(divinylbenzene) and poly(styrene-divinylbenzene) as catalysts for esterification of fatty acids," Renewable Energy, Elsevier, vol. 114(PB), pages 725-732.
  • Handle: RePEc:eee:renene:v:114:y:2017:i:pb:p:725-732
    DOI: 10.1016/j.renene.2017.07.084
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148117307115
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2017.07.084?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rezende, Michelle J.C. & Pinto, Angelo C., 2016. "Esterification of fatty acids using acid-activated Brazilian smectite natural clay as a catalyst," Renewable Energy, Elsevier, vol. 92(C), pages 171-177.
    2. Borges, M.E. & Díaz, L., 2012. "Recent developments on heterogeneous catalysts for biodiesel production by oil esterification and transesterification reactions: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2839-2849.
    3. Zanette, Andréia F. & Barella, Rodrigo A. & Pergher, Sibele B.C. & Treichel, Helen & Oliveira, Débora & Mazutti, Marcio A. & Silva, Edson A. & Oliveira, J. Vladimir, 2011. "Screening, optimization and kinetics of Jatropha curcas oil transesterification with heterogeneous catalysts," Renewable Energy, Elsevier, vol. 36(2), pages 726-731.
    4. Cherng-Yuan Lin & Yi-Wei Lin, 2012. "Fuel Characteristics of Biodiesel Produced from a High-Acid Oil from Soybean Soapstock by Supercritical-Methanol Transesterification," Energies, MDPI, vol. 5(7), pages 1-11, July.
    5. Patel, Anjali & Brahmkhatri, Varsha & Singh, Namita, 2013. "Biodiesel production by esterification of free fatty acid over sulfated zirconia," Renewable Energy, Elsevier, vol. 51(C), pages 227-233.
    6. Barros, Suellen D.T. & Coelho, Aline V. & Lachter, Elizabeth R. & San Gil, Rosane A.S. & Dahmouche, Karim & Pais da Silva, Maria Isabel & Souza, Andrea L.F., 2013. "Esterification of lauric acid with butanol over mesoporous materials," Renewable Energy, Elsevier, vol. 50(C), pages 585-589.
    7. Doyle, Aidan M. & Albayati, Talib M. & Abbas, Ammar S. & Alismaeel, Ziad T., 2016. "Biodiesel production by esterification of oleic acid over zeolite Y prepared from kaolin," Renewable Energy, Elsevier, vol. 97(C), pages 19-23.
    8. Avhad, M.R. & Marchetti, J.M., 2015. "A review on recent advancement in catalytic materials for biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 696-718.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guliani, Disha & Sobti, Amit & Toor, Amrit Pal, 2022. "Titania impregnated mesoporous MCM-48 as a solid photo-catalyst for the synthesis of methyl palmitate: Reaction mechanism and kinetics," Renewable Energy, Elsevier, vol. 191(C), pages 405-417.
    2. Pessoa Junior, Wanison A.G. & Takeno, Mitsuo L. & Nobre, Francisco X. & Barros, Silma de S. & Sá, Ingrity S.C. & Silva, Edson P. & Manzato, Lizandro & Iglauer, Stefan & de Freitas, Flávio A., 2020. "Application of water treatment sludge as a low-cost and eco-friendly catalyst in the biodiesel production via fatty acids esterification: Process optimization," Energy, Elsevier, vol. 213(C).
    3. Wang, Yi-Tong & Yang, Xing-Xia & Xu, Jie & Wang, Hong-Li & Wang, Zi-Bing & Zhang, Lei & Wang, Shao-Long & Liang, Jing-Long, 2019. "Biodiesel production from esterification of oleic acid by a sulfonated magnetic solid acid catalyst," Renewable Energy, Elsevier, vol. 139(C), pages 688-695.
    4. Nayak, Sheetal N. & Bhasin, Chandra Prakash & Nayak, Milap G., 2019. "A review on microwave-assisted transesterification processes using various catalytic and non-catalytic systems," Renewable Energy, Elsevier, vol. 143(C), pages 1366-1387.
    5. Laskar, Ikbal Bahar & Changmai, Bishwajit & Gupta, Rajat & Shi, Da & Jenkinson, Kellie J. & Wheatley, Andrew E.H. & Rokhum, Lalthazuala, 2021. "A mesoporous polysulfonic acid-formaldehyde polymeric catalyst for biodiesel production from Jatropha curcas oil," Renewable Energy, Elsevier, vol. 173(C), pages 415-421.
    6. Wang, Yongqiang & Zhao, Dan & Chen, Guanyi & Liu, Shejiang & Ji, Na & Ding, Hui & Fu, Jianfeng, 2019. "Preparation of phosphotungstic acid based poly(ionic liquid) and its application to esterification of palmitic acid," Renewable Energy, Elsevier, vol. 133(C), pages 317-324.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rezende, Michelle J.C. & Pinto, Angelo C., 2016. "Esterification of fatty acids using acid-activated Brazilian smectite natural clay as a catalyst," Renewable Energy, Elsevier, vol. 92(C), pages 171-177.
    2. Pourzolfaghar, Hamed & Abnisa, Faisal & Daud, Wan Mohd Ashri Wan & Aroua, Mohamed Kheireddine, 2016. "A review of the enzymatic hydroesterification process for biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 245-257.
    3. Mansir, Nasar & Teo, Siow Hwa & Rashid, Umer & Saiman, Mohd Izham & Tan, Yen Ping & Alsultan, G. Abdulkareem & Taufiq-Yap, Yun Hin, 2018. "Modified waste egg shell derived bifunctional catalyst for biodiesel production from high FFA waste cooking oil. A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3645-3655.
    4. Munir, Mamoona & Ahmad, Mushtaq & Saeed, Muhammad & Waseem, Amir & Rehan, Mohammad & Nizami, Abdul-Sattar & Zafar, Muhammad & Arshad, Muhammad & Sultana, Shazia, 2019. "Sustainable production of bioenergy from novel non-edible seed oil (Prunus cerasoides) using bimetallic impregnated montmorillonite clay catalyst," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 321-332.
    5. Marta Ramos & Ana Paula Soares Dias & Jaime Filipe Puna & João Gomes & João Carlos Bordado, 2019. "Biodiesel Production Processes and Sustainable Raw Materials," Energies, MDPI, vol. 12(23), pages 1-30, November.
    6. Zhang, Heng & Li, Hu & Hu, Yulin & Venkateswara Rao, Kasanneni Tirumala & Xu, Chunbao (Charles) & Yang, Song, 2019. "Advances in production of bio-based ester fuels with heterogeneous bifunctional catalysts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    7. Mardhiah, H. Haziratul & Ong, Hwai Chyuan & Masjuki, H.H. & Lim, Steven & Lee, H.V., 2017. "A review on latest developments and future prospects of heterogeneous catalyst in biodiesel production from non-edible oils," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1225-1236.
    8. Rafael Estevez & Laura Aguado-Deblas & Diego Luna & Felipa M. Bautista, 2019. "An Overview of the Production of Oxygenated Fuel Additives by Glycerol Etherification, Either with Isobutene or tert -Butyl Alcohol, over Heterogeneous Catalysts," Energies, MDPI, vol. 12(12), pages 1-20, June.
    9. Shahinuzzaman, M. & Yaakob, Zahira & Ahmed, Yunus, 2017. "Non-sulphide zeolite catalyst for bio-jet-fuel conversion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1375-1384.
    10. Kaur, Navjot & Ali, Amjad, 2015. "Preparation and application of Ce/ZrO2−TiO2/SO42− as solid catalyst for the esterification of fatty acids," Renewable Energy, Elsevier, vol. 81(C), pages 421-431.
    11. Amani, H. & Ahmad, Z. & Hameed, B.H., 2014. "Synthesis of fatty acid methyl esters via the methanolysis of palm oil over Ca3.5xZr0.5yAlxO3 mixed oxide catalyst," Renewable Energy, Elsevier, vol. 66(C), pages 680-685.
    12. Li, Mantian & Chen, Jinyi & Huang, Youjie & Li, Meichen & Lin, Xiaocheng & Qiu, Ting, 2020. "Reusable and efficient heterogeneous catalysts for biodiesel production from free fatty acids and oils: Self-solidifying hybrid ionic liquids," Energy, Elsevier, vol. 211(C).
    13. Daniel Carreira Batalha & Márcio José da Silva, 2021. "Biodiesel Production over Niobium-Containing Catalysts: A Review," Energies, MDPI, vol. 14(17), pages 1-33, September.
    14. Rade, Letícia L. & Lemos, Caroline O.T. & Barrozo, Marcos Antônio S. & Ribas, Rogério M. & Monteiro, Robson S. & Hori, Carla E., 2018. "Optimization of continuous esterification of oleic acid with ethanol over niobic acid," Renewable Energy, Elsevier, vol. 115(C), pages 208-216.
    15. Vargas, Edgar M. & Neves, Márcia C. & Tarelho, Luís A.C. & Nunes, Maria I., 2019. "Solid catalysts obtained from wastes for FAME production using mixtures of refined palm oil and waste cooking oils," Renewable Energy, Elsevier, vol. 136(C), pages 873-883.
    16. Shi, Guoliang & Yu, Feng & Wang, Yan & Pan, Dahai & Wang, Huigang & Li, Ruifeng, 2016. "A novel one-pot synthesis of tetragonal sulfated zirconia catalyst with high activity for biodiesel production from the transesterification of soybean oil," Renewable Energy, Elsevier, vol. 92(C), pages 22-29.
    17. di Bitonto, Luigi & Lopez, Antonio & Mascolo, Giuseppe & Mininni, Giuseppe & Pastore, Carlo, 2016. "Efficient solvent-less separation of lipids from municipal wet sewage scum and their sustainable conversion into biodiesel," Renewable Energy, Elsevier, vol. 90(C), pages 55-61.
    18. Kuljiraseth, Jirayu & Kumpradit, Thanakorn & Leungcharoenwattana, Tuangrat & Poo-arporn, Yingyot & Jitkarnka, Sirirat, 2020. "Integrated glycerol- and ethanol-based chemical synthesis routes using Cu–Mg–Al LDH-derived catalysts without external hydrogen: Intervention of bio-ethanol co-fed with glycerol," Renewable Energy, Elsevier, vol. 156(C), pages 975-985.
    19. Bet-Moushoul, Elsie & Farhadi, Khalil & Mansourpanah, Yaghoub & Molaie, Rahim & Forough, Mehrdad & Nikbakht, Ali Mohammad, 2016. "Development of novel Ag/bauxite nanocomposite as a heterogeneous catalyst for biodiesel production," Renewable Energy, Elsevier, vol. 92(C), pages 12-21.
    20. Agata Mlonka-Mędrala, 2023. "Recent Findings on Fly Ash-Derived Zeolites Synthesis and Utilization According to the Circular Economy Concept," Energies, MDPI, vol. 16(18), pages 1-21, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:114:y:2017:i:pb:p:725-732. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.