IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v115y2018icp208-216.html
   My bibliography  Save this article

Optimization of continuous esterification of oleic acid with ethanol over niobic acid

Author

Listed:
  • Rade, Letícia L.
  • Lemos, Caroline O.T.
  • Barrozo, Marcos Antônio S.
  • Ribas, Rogério M.
  • Monteiro, Robson S.
  • Hori, Carla E.

Abstract

The aim of this work was to evaluate the continuous production of biodiesel through the esterification reaction between oleic acid and ethanol using niobic acid as a solid acid catalyst. In this study, different calcination temperatures of niobic acid were tested. W/F tests were carried out, to avoid mass transfer problems and, then, the catalytic activities of all the samples were evaluated. Results showed that niobic acid calcined at 350 °C presented the highest catalytic activity. The experimental conditions of temperature, amount of catalyst and ethanol:oleic acid molar ratio were optimized by using design of experiments (DOE) and canonical analysis. All three single parameters were significant on the yield of esters. The esterification reaction of oleic acid led to yields of esters up to 70% and conversion up to 90%, at 249 °C, ethanol:oleic acid molar ratio of 10.83:1 and 0.7 g of niobic acid.

Suggested Citation

  • Rade, Letícia L. & Lemos, Caroline O.T. & Barrozo, Marcos Antônio S. & Ribas, Rogério M. & Monteiro, Robson S. & Hori, Carla E., 2018. "Optimization of continuous esterification of oleic acid with ethanol over niobic acid," Renewable Energy, Elsevier, vol. 115(C), pages 208-216.
  • Handle: RePEc:eee:renene:v:115:y:2018:i:c:p:208-216
    DOI: 10.1016/j.renene.2017.08.035
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148117307620
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2017.08.035?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kaur, Navjot & Ali, Amjad, 2015. "Preparation and application of Ce/ZrO2−TiO2/SO42− as solid catalyst for the esterification of fatty acids," Renewable Energy, Elsevier, vol. 81(C), pages 421-431.
    2. Borges, M.E. & Díaz, L., 2012. "Recent developments on heterogeneous catalysts for biodiesel production by oil esterification and transesterification reactions: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2839-2849.
    3. Doyle, Aidan M. & Albayati, Talib M. & Abbas, Ammar S. & Alismaeel, Ziad T., 2016. "Biodiesel production by esterification of oleic acid over zeolite Y prepared from kaolin," Renewable Energy, Elsevier, vol. 97(C), pages 19-23.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rade, Letícia Leandro & Lemos, Caroline Ortega Terra & Barrozo, Marcos Antônio de Souza & Ribas, Rogério Marques & Monteiro, Robson de Souza & Hori, Carla Eponina, 2019. "Optimization of esterification reaction over niobium phosphate in a packed bed tubular reactor," Renewable Energy, Elsevier, vol. 131(C), pages 348-355.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Heng & Li, Hu & Hu, Yulin & Venkateswara Rao, Kasanneni Tirumala & Xu, Chunbao (Charles) & Yang, Song, 2019. "Advances in production of bio-based ester fuels with heterogeneous bifunctional catalysts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    2. de Aguiar, Viviane Marques & de Souza, Andrea Luzia F. & Galdino, Fernanda S. & da Silva, Michelle Martha C. & Teixeira, Viviane Gomes & Lachter, Elizabeth R., 2017. "Sulfonated poly(divinylbenzene) and poly(styrene-divinylbenzene) as catalysts for esterification of fatty acids," Renewable Energy, Elsevier, vol. 114(PB), pages 725-732.
    3. Maria Ameen & Mushtaq Ahmad & Muhammad Zafar & Mamoona Munir & Muhammad Mujtaba Mujtaba & Shazia Sultana & Rozina . & Samah Elsayed El-Khatib & Manzoore Elahi M. Soudagar & M. A. Kalam, 2022. "Prospects of Catalysis for Process Sustainability of Eco-Green Biodiesel Synthesis via Transesterification: A State-Of-The-Art Review," Sustainability, MDPI, vol. 14(12), pages 1-38, June.
    4. Daniel Carreira Batalha & Márcio José da Silva, 2021. "Biodiesel Production over Niobium-Containing Catalysts: A Review," Energies, MDPI, vol. 14(17), pages 1-33, September.
    5. Mansir, Nasar & Teo, Siow Hwa & Rashid, Umer & Saiman, Mohd Izham & Tan, Yen Ping & Alsultan, G. Abdulkareem & Taufiq-Yap, Yun Hin, 2018. "Modified waste egg shell derived bifunctional catalyst for biodiesel production from high FFA waste cooking oil. A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3645-3655.
    6. Kuljiraseth, Jirayu & Kumpradit, Thanakorn & Leungcharoenwattana, Tuangrat & Poo-arporn, Yingyot & Jitkarnka, Sirirat, 2020. "Integrated glycerol- and ethanol-based chemical synthesis routes using Cu–Mg–Al LDH-derived catalysts without external hydrogen: Intervention of bio-ethanol co-fed with glycerol," Renewable Energy, Elsevier, vol. 156(C), pages 975-985.
    7. Agata Mlonka-Mędrala, 2023. "Recent Findings on Fly Ash-Derived Zeolites Synthesis and Utilization According to the Circular Economy Concept," Energies, MDPI, vol. 16(18), pages 1-21, September.
    8. Lani, Nurul Saadiah & Ngadi, Norzita & Inuwa, Ibrahim Mohammed, 2020. "New route for the synthesis of silica-supported calcium oxide catalyst in biodiesel production," Renewable Energy, Elsevier, vol. 156(C), pages 1266-1277.
    9. Shen, Yafei, 2017. "Rice husk silica derived nanomaterials for sustainable applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 453-466.
    10. Abdelmigeed, Mai O. & Al-Sakkari, Eslam G. & Hefney, Mahmoud S. & Ismail, Fatma M. & Abdelghany, Amr & Ahmed, Tamer S. & Ismail, Ibrahim M., 2021. "Magnetized ZIF-8 impregnated with sodium hydroxide as a heterogeneous catalyst for high-quality biodiesel production," Renewable Energy, Elsevier, vol. 165(P1), pages 405-419.
    11. Gomes, Glaucio J. & Costa, Michelle Budke & Bittencourt, Paulo R.S. & Zalazar, María Fernanda & Arroyo, Pedro A., 2021. "Catalytic improvement of biomass conversion: Effect of adding mesoporosity on MOR zeolite for esterification with oleic acid," Renewable Energy, Elsevier, vol. 178(C), pages 1-12.
    12. Rezende, Michelle J.C. & Pinto, Angelo C., 2016. "Esterification of fatty acids using acid-activated Brazilian smectite natural clay as a catalyst," Renewable Energy, Elsevier, vol. 92(C), pages 171-177.
    13. Kazemi Shariat Panahi, Hamed & Hosseinzadeh-Bandbafha, Homa & Dehhaghi, Mona & Orooji, Yasin & Mahian, Omid & Shahbeik, Hossein & Kiehbadroudinezhad, Mohammadali & Kalam, Md Abul & Karimi-Maleh, Hassa, 2024. "Nanotechnology applications in biodiesel processing and production: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    14. Rafael Estevez & Laura Aguado-Deblas & Diego Luna & Felipa M. Bautista, 2019. "An Overview of the Production of Oxygenated Fuel Additives by Glycerol Etherification, Either with Isobutene or tert -Butyl Alcohol, over Heterogeneous Catalysts," Energies, MDPI, vol. 12(12), pages 1-20, June.
    15. Xie, Wenlei & Li, Jiangbo, 2023. "Magnetic solid catalysts for sustainable and cleaner biodiesel production: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    16. Shahinuzzaman, M. & Yaakob, Zahira & Ahmed, Yunus, 2017. "Non-sulphide zeolite catalyst for bio-jet-fuel conversion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1375-1384.
    17. Long, Yun-Duo & Fang, Zhen & Su, Tong-Chao & Yang, Qing, 2014. "Co-production of biodiesel and hydrogen from rapeseed and Jatropha oils with sodium silicate and Ni catalysts," Applied Energy, Elsevier, vol. 113(C), pages 1819-1825.
    18. Abukhadra, Mostafa R. & Salam, Mohamed Abdel & Ibrahim, Sherouk M., 2019. "Insight into the catalytic conversion of palm oil into biodiesel using Na+/K+ trapped muscovite/phillipsite composite as a novel catalyst: Effect of ultrasonic irradiation and mechanism," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    19. Abdullah, Sharifah Hanis Yasmin Sayid & Hanapi, Nur Hanis Mohamad & Azid, Azman & Umar, Roslan & Juahir, Hafizan & Khatoon, Helena & Endut, Azizah, 2017. "A review of biomass-derived heterogeneous catalyst for a sustainable biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1040-1051.
    20. Galadima, Ahmad & Muraza, Oki, 2014. "Biodiesel production from algae by using heterogeneous catalysts: A critical review," Energy, Elsevier, vol. 78(C), pages 72-83.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:115:y:2018:i:c:p:208-216. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.