IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v254y2025ipas0951832024006550.html
   My bibliography  Save this article

A reliability analysis method for evaluating performance degradation considering the coupling of multiple progressive damage factors and multiple stochastic factors

Author

Listed:
  • Deyin, Jiang
  • Zhixuan, Gao
  • Keke, Wang
  • Senke, Jiang
  • Weimin, Cui
  • Song, Bifeng

Abstract

The manufacturing and use of aircraft lock mechanisms are characterized by coupling multiple stochastic factors and multiple progressive damage factors that seriously affect the reliability of the mechanism. For a certain type of aircraft drag chute lock mechanism, a reliability degradation analysis method considering the coupling of multiple stochastic factors and multiple progressive damage factors is proposed. Based on the working principle of the drag parachute lock mechanism, the effects of multiple progressive damage factors on the motion accuracy of the mechanism are analyzed by considering the wear and tear over time, the deformation due to impact and the creep of the steel cables. The influence of multiple stochastic factors on the function of the mechanism is investigated, and the multiple stochastic factors include manufacturing and processing errors, changes in material properties, and changes in environmental stresses. A reliability degradation model and sensitivity analysis method based on multiple progressive damage factors under multiple stochastic factors are proposed. The results show that the proposed method can provide guidance for the design, manufacture and utilization of drag chute lock mechanisms as well as the reliability analysis of complex mechanical mechanisms in other aerospace products.

Suggested Citation

  • Deyin, Jiang & Zhixuan, Gao & Keke, Wang & Senke, Jiang & Weimin, Cui & Song, Bifeng, 2025. "A reliability analysis method for evaluating performance degradation considering the coupling of multiple progressive damage factors and multiple stochastic factors," Reliability Engineering and System Safety, Elsevier, vol. 254(PA).
  • Handle: RePEc:eee:reensy:v:254:y:2025:i:pa:s0951832024006550
    DOI: 10.1016/j.ress.2024.110584
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832024006550
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2024.110584?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Geng, Yixuan & Wang, Shaoping & Shi, Jian & Zhang, Yuwei & Wang, Weijie, 2023. "Reliability modeling of phased degradation under external shocks," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    2. Zhu, Shun-Peng & Huang, Hong-Zhong & Peng, Weiwen & Wang, Hai-Kun & Mahadevan, Sankaran, 2016. "Probabilistic Physics of Failure-based framework for fatigue life prediction of aircraft gas turbine discs under uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 146(C), pages 1-12.
    3. Wang, Run-Zi & Gu, Hang-Hang & Zhu, Shun-Peng & Li, Kai-Shang & Wang, Ji & Wang, Xiao-Wei & Hideo, Miura & Zhang, Xian-Cheng & Tu, Shan-Tung, 2022. "A data-driven roadmap for creep-fatigue reliability assessment and its implementation in low-pressure turbine disk at elevated temperatures," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    4. Zeng, Chen-dong & Qiu, Zhi-cheng & Zhang, Fen-hua & Zhang, Xian-min, 2023. "Error modelling and motion reliability analysis of a multi-DOF redundant parallel mechanism with hybrid uncertainties," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    5. Jiutong Zhang & Qingyuan Zhang & Rui Kang, 2019. "Reliability is a science: A philosophical analysis of its validity," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 35(2), pages 275-277, March.
    6. Jiang, Deyin & Chen, Tianyu & Xie, Juanzhang & Cui, Weimin & Song, Bifeng, 2023. "A mechanical system reliability degradation analysis and remaining life estimation method——With the example of an aircraft hatch lock mechanism," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    7. Chen, Wen-Bin & Li, Xiao-Yang & Kang, Rui, 2022. "Integration for degradation analysis with multi-source ADT datasets considering dataset discrepancies and epistemic uncertainties," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    8. Wang, Run-Zi & Gu, Hang-Hang & Liu, Yu & Miura, Hideo & Zhang, Xian-Cheng & Tu, Shan-Tung, 2023. "Surrogate-modeling-assisted creep-fatigue reliability assessment in a low-pressure turbine disc considering multi-source uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 240(C).
    9. Xie, Bin & Wang, Yanzhong & Zhu, Yunyi & Liu, Peng & Wu, Yu & Lu, Fengxia, 2024. "Time-variant reliability analysis of angular contact ball bearing considering the coupled effect of rolling contact fatigue damage and wear," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    10. Wu, Bei & Cui, Lirong, 2020. "Reliability evaluation of Markov renewal shock models with multiple failure mechanisms," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    11. Li, Xiao-Yang & Chen, Wen-Bin & Kang, Rui, 2021. "Performance margin-based reliability analysis for aircraft lock mechanism considering multi-source uncertainties and wear," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gao, Hai-Feng & Wang, Yu-Hang & Li, Yang & Zio, Enrico, 2024. "Distributed-collaborative surrogate modeling approach for creep-fatigue reliability assessment of turbine blades considering multi-source uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
    2. Pan, Wei-Huang & Feng, Yun-Wen & Lu, Cheng & Liu, Jia-Qi, 2023. "Analyzing the operation reliability of aeroengine using Quick Access Recorder flight data," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    3. Li, Xiao-Yang & Chen, Wen-Bin & Kang, Rui, 2021. "Performance margin-based reliability analysis for aircraft lock mechanism considering multi-source uncertainties and wear," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    4. Jiang, Shan & Jia, Xujie, 2024. "Reliability assessment under continuous fatigue degradation and shock based on Markov renewal process," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    5. Shen, Xingkeng & Feng, Kaixuan & Xu, Heming & Wang, Guangqiang & Zhang, Yishang & Dai, Ying & Yun, Wanying, 2023. "Reliability analysis of bending fatigue life of hydraulic pipeline," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    6. Li, Yang & Gao, Haifeng & Chen, Hongtian & Liu, Chun & Yang, Zhe & Zio, Enrico, 2024. "Accelerated degradation testing for lifetime analysis considering random effects and the influence of stress and measurement errors," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
    7. Gu, Hang-Hang & Wang, Run-Zi & Zhang, Kun & Li, Kai-Shang & Sun, Li & Zhang, Xian-Cheng & Tu, Shan-Tung, 2025. "Damage-driven framework for reliability assessment of steam turbine rotors operating under flexible conditions," Reliability Engineering and System Safety, Elsevier, vol. 254(PA).
    8. Huang, Peng & Li, He & Gu, Yingkui & Qiu, Guangqi, 2024. "An extended moment-based trajectory accuracy reliability analysis method of robot manipulators with random and interval uncertainties," Reliability Engineering and System Safety, Elsevier, vol. 246(C).
    9. Pan, Yan & Liang, Bin & Yang, Lei & Liu, Houde & Wu, Tonghai & Wang, Shuo, 2024. "Spatial-temporal modeling of oil condition monitoring: A review," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    10. Liu, Xintian & Mao, Kui & Wang, Xiaolan & Wang, Xu & Wang, Yansong, 2020. "A modified quality loss model of service life prediction for products via wear regularity," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    11. Zhongzhe Chen & Shuchen Cao & Zijian Mao, 2017. "Remaining Useful Life Estimation of Aircraft Engines Using a Modified Similarity and Supporting Vector Machine (SVM) Approach," Energies, MDPI, vol. 11(1), pages 1-14, December.
    12. Mohammad Ali Farsi & S. Masood Hosseini, 2019. "Statistical distributions comparison for remaining useful life prediction of components via ANN," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 10(3), pages 429-436, June.
    13. Rong Yuan & Debiao Meng & Haiqing Li, 2016. "Multidisciplinary reliability design optimization using an enhanced saddlepoint approximation in the framework of sequential optimization and reliability analysis," Journal of Risk and Reliability, , vol. 230(6), pages 570-578, December.
    14. Bui, Ha & Sakurahara, Tatsuya & Pence, Justin & Reihani, Seyed & Kee, Ernie & Mohaghegh, Zahra, 2019. "An algorithm for enhancing spatiotemporal resolution of probabilistic risk assessment to address emergent safety concerns in nuclear power plants," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 405-428.
    15. Zhang, Wei & Li, Xiang & Ma, Hui & Luo, Zhong & Li, Xu, 2021. "Transfer learning using deep representation regularization in remaining useful life prediction across operating conditions," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    16. Wang, Yueyao & Lee, I-Chen & Hong, Yili & Deng, Xinwei, 2022. "Building degradation index with variable selection for multivariate sensory data," Reliability Engineering and System Safety, Elsevier, vol. 227(C).
    17. Khakifirooz, Marzieh & Fathi, Michel & Lee, I-Chen & Tseng, Sheng-Tsaing, 2023. "Neural ordinary differential equation for sequential optimal design of fatigue test under accelerated life test analysis," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    18. Wang, Yifei & Xie, Mingjiang & Su, Chun, 2024. "Multi-objective maintenance strategy for corroded pipelines considering the correlation of different failure modes," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    19. Yao, Jinyong & Gao, Zhanfei & He, Yihai & Peng, Chong, 2024. "Integrated mission reliability modeling for multistate manufacturing systems considering heterogeneous feedstocks based on extended stochastic flow manufacturing network," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    20. Mei, Fabin & Chen, Hao & Yang, Wenying & Zhai, Guofu, 2024. "A hybrid physics-informed machine learning approach for time-dependent reliability assessment of electromagnetic relays," Reliability Engineering and System Safety, Elsevier, vol. 252(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:254:y:2025:i:pa:s0951832024006550. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.