IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v205y2021ics0951832020307341.html
   My bibliography  Save this article

Performance margin-based reliability analysis for aircraft lock mechanism considering multi-source uncertainties and wear

Author

Listed:
  • Li, Xiao-Yang
  • Chen, Wen-Bin
  • Kang, Rui

Abstract

The failures of the lock mechanism of the aircraft landing gear door can impede the retraction and extension processes of the landing gear and cause severe accidents; thus, the aircraft lock mechanism is always required with extremely high reliability. During manufacturing and usage stages, uncertainties are ubiquitous and performance degradation is inevitable, and they influence the reliability of the aircraft lock mechanism. In this paper, based on the reliability science principles, a performance margin-based reliability analysis considering performance degradation caused by wear and multi-source uncertainties is developed for an aircraft lock mechanism. Firstly, the performance margin model with the degradation of the aircraft lock mechanism is constructed based on the functional principles and the influence mechanism of wear. Then, we analyze the essence of each uncertainty source including the uncertainties in manufacturing imperfections, material properties, operational and environmental stresses, and performance thresholds, and quantify each uncertainty with a probability distribution. Finally, the reliability model is established. A numerical study of an aircraft lock mechanism is conducted and the reliability sensitivity analysis is implemented. The results show that the proposed method can provide guidance to the design and manufacturing processes of the aircraft lock mechanism to meet reliability requirements.

Suggested Citation

  • Li, Xiao-Yang & Chen, Wen-Bin & Kang, Rui, 2021. "Performance margin-based reliability analysis for aircraft lock mechanism considering multi-source uncertainties and wear," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
  • Handle: RePEc:eee:reensy:v:205:y:2021:i:c:s0951832020307341
    DOI: 10.1016/j.ress.2020.107234
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832020307341
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2020.107234?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dong, Wenbin & Moan, Torgeir & Gao, Zhen, 2012. "Fatigue reliability analysis of the jacket support structure for offshore wind turbine considering the effect of corrosion and inspection," Reliability Engineering and System Safety, Elsevier, vol. 106(C), pages 11-27.
    2. Jiutong Zhang & Qingyuan Zhang & Rui Kang, 2019. "Reliability is a science: A philosophical analysis of its validity," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 35(2), pages 275-277, March.
    3. Shan Jiang & Wei Zhang & Xiaoyang Li & Fuqiang Sun, 2014. "An Analytical Model for Fatigue Crack Propagation Prediction with Overload Effect," Mathematical Problems in Engineering, Hindawi, vol. 2014, pages 1-9, July.
    4. Zhu, Shun-Peng & Huang, Hong-Zhong & Peng, Weiwen & Wang, Hai-Kun & Mahadevan, Sankaran, 2016. "Probabilistic Physics of Failure-based framework for fatigue life prediction of aircraft gas turbine discs under uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 146(C), pages 1-12.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pan, Yan & Liang, Bin & Yang, Lei & Liu, Houde & Wu, Tonghai & Wang, Shuo, 2024. "Spatial-temporal modeling of oil condition monitoring: A review," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    2. Pan, Wei-Huang & Feng, Yun-Wen & Lu, Cheng & Liu, Jia-Qi, 2023. "Analyzing the operation reliability of aeroengine using Quick Access Recorder flight data," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    3. Yao, Jinyong & Gao, Zhanfei & He, Yihai & Peng, Chong, 2024. "Integrated mission reliability modeling for multistate manufacturing systems considering heterogeneous feedstocks based on extended stochastic flow manufacturing network," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    4. He, Jingjing & Huang, Min & Wang, Wei & Wang, Shaohua & Guan, Xuefei, 2021. "An asymptotic stochastic response surface approach to reliability assessment under multi-source heterogeneous uncertainties," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    5. Gan, Chenyu & Ding, Shuiting & Qiu, Tian & Liu, Peng & Ma, Qinglin, 2024. "Model-based safety analysis with time resolution (MBSA-TR) method for complex aerothermal–mechanical systems of aero-engines," Reliability Engineering and System Safety, Elsevier, vol. 243(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Deirdre O’Donnell & Jimmy Murphy & Vikram Pakrashi, 2020. "Damage Monitoring of a Catenary Moored Spar Platform for Renewable Energy Devices," Energies, MDPI, vol. 13(14), pages 1-22, July.
    2. Leimeister, Mareike & Kolios, Athanasios, 2018. "A review of reliability-based methods for risk analysis and their application in the offshore wind industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 1065-1076.
    3. Jin, Xin & Ju, Wenbin & Zhang, Zhaolong & Guo, Lianxin & Yang, Xiangang, 2016. "System safety analysis of large wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1293-1307.
    4. Dong, Y. & Teixeira, A.P. & Guedes Soares, C., 2018. "Time-variant fatigue reliability assessment of welded joints based on the PHI2 and response surface methods," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 120-130.
    5. Liu, Xintian & Mao, Kui & Wang, Xiaolan & Wang, Xu & Wang, Yansong, 2020. "A modified quality loss model of service life prediction for products via wear regularity," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    6. Yeter, B. & Garbatov, Y. & Guedes Soares, C., 2020. "Risk-based maintenance planning of offshore wind turbine farms," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    7. Zhongzhe Chen & Shuchen Cao & Zijian Mao, 2017. "Remaining Useful Life Estimation of Aircraft Engines Using a Modified Similarity and Supporting Vector Machine (SVM) Approach," Energies, MDPI, vol. 11(1), pages 1-14, December.
    8. Mohammad Ali Farsi & S. Masood Hosseini, 2019. "Statistical distributions comparison for remaining useful life prediction of components via ANN," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 10(3), pages 429-436, June.
    9. Dong, Y. & Teixeira, A.P. & Guedes Soares, C., 2020. "Application of adaptive surrogate models in time-variant fatigue reliability assessment of welded joints with surface cracks," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    10. Rong Yuan & Debiao Meng & Haiqing Li, 2016. "Multidisciplinary reliability design optimization using an enhanced saddlepoint approximation in the framework of sequential optimization and reliability analysis," Journal of Risk and Reliability, , vol. 230(6), pages 570-578, December.
    11. Bui, Ha & Sakurahara, Tatsuya & Pence, Justin & Reihani, Seyed & Kee, Ernie & Mohaghegh, Zahra, 2019. "An algorithm for enhancing spatiotemporal resolution of probabilistic risk assessment to address emergent safety concerns in nuclear power plants," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 405-428.
    12. Zhang, Wei & Li, Xiang & Ma, Hui & Luo, Zhong & Li, Xu, 2021. "Transfer learning using deep representation regularization in remaining useful life prediction across operating conditions," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    13. Ossai, Chinedu I., 2017. "Optimal renewable energy generation – Approaches for managing ageing assets mechanisms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 269-280.
    14. Chen, Chao & Duffour, Philippe & Fromme, Paul & Hua, Xugang, 2021. "Numerically efficient fatigue life prediction of offshore wind turbines using aerodynamic decoupling," Renewable Energy, Elsevier, vol. 178(C), pages 1421-1434.
    15. Li, He & Diaz, H. & Guedes Soares, C., 2021. "A developed failure mode and effect analysis for floating offshore wind turbine support structures," Renewable Energy, Elsevier, vol. 164(C), pages 133-145.
    16. Liao, Ding & Zhu, Shun-Peng & Correia, José A.F.O. & De Jesus, Abílio M.P. & Veljkovic, Milan & Berto, Filippo, 2022. "Fatigue reliability of wind turbines: historical perspectives, recent developments and future prospects," Renewable Energy, Elsevier, vol. 200(C), pages 724-742.
    17. Chi-Yu Chian & Yi-Qing Zhao & Tsung-Yueh Lin & Bryan Nelson & Hsin-Haou Huang, 2018. "Comparative Study of Time-Domain Fatigue Assessments for an Offshore Wind Turbine Jacket Substructure by Using Conventional Grid-Based and Monte Carlo Sampling Methods," Energies, MDPI, vol. 11(11), pages 1-17, November.
    18. Hegseth, John Marius & Bachynski, Erin E. & Leira, Bernt J., 2021. "Effect of environmental modelling and inspection strategy on the optimal design of floating wind turbines," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    19. Arcos Jiménez, Alfredo & Gómez Muñoz, Carlos Quiterio & García Márquez, Fausto Pedro, 2019. "Dirt and mud detection and diagnosis on a wind turbine blade employing guided waves and supervised learning classifiers," Reliability Engineering and System Safety, Elsevier, vol. 184(C), pages 2-12.
    20. Lu, Yaohui & Zheng, Heyan & Zeng, Jing & Chen, Tianli & Wu, Pingbo, 2019. "Fatigue life reliability evaluation in a high-speed train bogie frame using accelerated life and numerical test," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 221-232.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:205:y:2021:i:c:s0951832020307341. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.