IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v146y2016icp1-12.html
   My bibliography  Save this article

Probabilistic Physics of Failure-based framework for fatigue life prediction of aircraft gas turbine discs under uncertainty

Author

Listed:
  • Zhu, Shun-Peng
  • Huang, Hong-Zhong
  • Peng, Weiwen
  • Wang, Hai-Kun
  • Mahadevan, Sankaran

Abstract

A probabilistic Physics of Failure-based framework for fatigue life prediction of aircraft gas turbine discs operating under uncertainty is developed. The framework incorporates the overall uncertainties appearing in a structural integrity assessment. A comprehensive uncertainty quantification (UQ) procedure is presented to quantify multiple types of uncertainty using multiplicative and additive UQ methods. In addition, the factors that contribute the most to the resulting output uncertainty are investigated and identified for uncertainty reduction in decision-making. A high prediction accuracy of the proposed framework is validated through a comparison of model predictions to the experimental results of GH4133 superalloy and full-scale tests of aero engine high-pressure turbine discs.

Suggested Citation

  • Zhu, Shun-Peng & Huang, Hong-Zhong & Peng, Weiwen & Wang, Hai-Kun & Mahadevan, Sankaran, 2016. "Probabilistic Physics of Failure-based framework for fatigue life prediction of aircraft gas turbine discs under uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 146(C), pages 1-12.
  • Handle: RePEc:eee:reensy:v:146:y:2016:i:c:p:1-12
    DOI: 10.1016/j.ress.2015.10.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832015002847
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2015.10.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Park, Inseok & Amarchinta, Hemanth K. & Grandhi, Ramana V., 2010. "A Bayesian approach for quantification of model uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 95(7), pages 777-785.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jan M. Smolarski & Jose G. Vega, 2013. "Extreme events: a study of small oil and gas firms," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 53(3), pages 809-836, September.
    2. Park, Chan Y. & Kim, Nam H. & Haftka, Raphael T., 2014. "How coupon and element tests reduce conservativeness in element failure prediction," Reliability Engineering and System Safety, Elsevier, vol. 123(C), pages 123-136.
    3. Riley, Matthew E., 2015. "Evidence-based quantification of uncertainties induced via simulation-based modeling," Reliability Engineering and System Safety, Elsevier, vol. 133(C), pages 79-86.
    4. Tohme, Tony & Vanslette, Kevin & Youcef-Toumi, Kamal, 2020. "A generalized Bayesian approach to model calibration," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    5. Woloszyk, Krzysztof & Goerlandt, Floris & Montewka, Jakub, 2024. "A framework to analyse the probability of accidental hull girder failure considering advanced corrosion degradation for risk-based ship design," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    6. Aven, Terje, 2016. "Risk assessment and risk management: Review of recent advances on their foundation," European Journal of Operational Research, Elsevier, vol. 253(1), pages 1-13.
    7. Radaideh, Majdi I. & Borowiec, Katarzyna & Kozlowski, Tomasz, 2019. "Integrated framework for model assessment and advanced uncertainty quantification of nuclear computer codes under Bayesian statistics," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 357-377.
    8. Li, Xiaoyue & Yang, Yinfei & Li, Liang & Zhao, Guolong & He, Ning, 2020. "Uncertainty quantification in machining deformation based on Bayesian network," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    9. Park, Inseok & Grandhi, Ramana V., 2014. "A Bayesian statistical method for quantifying model form uncertainty and two model combination methods," Reliability Engineering and System Safety, Elsevier, vol. 129(C), pages 46-56.
    10. Sankararaman, Shankar & Mahadevan, Sankaran, 2015. "Integration of model verification, validation, and calibration for uncertainty quantification in engineering systems," Reliability Engineering and System Safety, Elsevier, vol. 138(C), pages 194-209.
    11. Liu, Di & Wang, Shaoping & Zhang, Chao & Tomovic, Mileta, 2018. "Bayesian model averaging based reliability analysis method for monotonic degradation dataset based on inverse Gaussian process and Gamma process," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 25-38.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:146:y:2016:i:c:p:1-12. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.