IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v146y2016icp1-12.html
   My bibliography  Save this article

Probabilistic Physics of Failure-based framework for fatigue life prediction of aircraft gas turbine discs under uncertainty

Author

Listed:
  • Zhu, Shun-Peng
  • Huang, Hong-Zhong
  • Peng, Weiwen
  • Wang, Hai-Kun
  • Mahadevan, Sankaran

Abstract

A probabilistic Physics of Failure-based framework for fatigue life prediction of aircraft gas turbine discs operating under uncertainty is developed. The framework incorporates the overall uncertainties appearing in a structural integrity assessment. A comprehensive uncertainty quantification (UQ) procedure is presented to quantify multiple types of uncertainty using multiplicative and additive UQ methods. In addition, the factors that contribute the most to the resulting output uncertainty are investigated and identified for uncertainty reduction in decision-making. A high prediction accuracy of the proposed framework is validated through a comparison of model predictions to the experimental results of GH4133 superalloy and full-scale tests of aero engine high-pressure turbine discs.

Suggested Citation

  • Zhu, Shun-Peng & Huang, Hong-Zhong & Peng, Weiwen & Wang, Hai-Kun & Mahadevan, Sankaran, 2016. "Probabilistic Physics of Failure-based framework for fatigue life prediction of aircraft gas turbine discs under uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 146(C), pages 1-12.
  • Handle: RePEc:eee:reensy:v:146:y:2016:i:c:p:1-12
    DOI: 10.1016/j.ress.2015.10.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832015002847
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2015.10.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Park, Inseok & Amarchinta, Hemanth K. & Grandhi, Ramana V., 2010. "A Bayesian approach for quantification of model uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 95(7), pages 777-785.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Xintian & Mao, Kui & Wang, Xiaolan & Wang, Xu & Wang, Yansong, 2020. "A modified quality loss model of service life prediction for products via wear regularity," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    2. Zhong, Shisheng & Tan, Zhixue & Lin, Lin, 2019. "Long-term prediction of system degradation with similarity analysis of multivariate patterns," Reliability Engineering and System Safety, Elsevier, vol. 184(C), pages 101-109.
    3. Chen, Gaige & Chen, Jinglong & Zi, Yanyang & Miao, Huihui, 2017. "Hyper-parameter optimization based nonlinear multistate deterioration modeling for deterioration level assessment and remaining useful life prognostics," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 517-526.
    4. Ahmed Zohair Djeddi & Ahmed Hafaifa & Abdellah Kouzou & Salam Abudura, 2017. "Exploration of reliability algorithms using modified Weibull distribution: application on gas turbine," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 8(2), pages 1885-1894, November.
    5. Pan, Wei-Huang & Feng, Yun-Wen & Lu, Cheng & Liu, Jia-Qi, 2023. "Analyzing the operation reliability of aeroengine using Quick Access Recorder flight data," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    6. Zhongzhe Chen & Shuchen Cao & Zijian Mao, 2017. "Remaining Useful Life Estimation of Aircraft Engines Using a Modified Similarity and Supporting Vector Machine (SVM) Approach," Energies, MDPI, vol. 11(1), pages 1-14, December.
    7. Shen, Xingkeng & Feng, Kaixuan & Xu, Heming & Wang, Guangqiang & Zhang, Yishang & Dai, Ying & Yun, Wanying, 2023. "Reliability analysis of bending fatigue life of hydraulic pipeline," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    8. Ray, Douglas & Ramirez-Marquez, Jose, 2020. "A framework for probabilistic model-based engineering and data synthesis," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    9. Mohammad Ali Farsi & S. Masood Hosseini, 2019. "Statistical distributions comparison for remaining useful life prediction of components via ANN," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 10(3), pages 429-436, June.
    10. Li, Xiao-Yang & Chen, Wen-Bin & Kang, Rui, 2021. "Performance margin-based reliability analysis for aircraft lock mechanism considering multi-source uncertainties and wear," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    11. Aizpurua, J.I. & Stewart, B.G. & McArthur, S.D.J. & Penalba, M. & Barrenetxea, M. & Muxika, E. & Ringwood, J.V., 2022. "Probabilistic forecasting informed failure prognostics framework for improved RUL prediction under uncertainty: A transformer case study," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    12. Jaehyeok Doh, 2023. "Bayesian inference-based prognosis of fatigue damage for MPPO polymer using Zhurkov fatigue life model," Journal of Risk and Reliability, , vol. 237(4), pages 636-653, August.
    13. Rong Yuan & Debiao Meng & Haiqing Li, 2016. "Multidisciplinary reliability design optimization using an enhanced saddlepoint approximation in the framework of sequential optimization and reliability analysis," Journal of Risk and Reliability, , vol. 230(6), pages 570-578, December.
    14. Lu, Yaohui & Zheng, Heyan & Zeng, Jing & Chen, Tianli & Wu, Pingbo, 2019. "Fatigue life reliability evaluation in a high-speed train bogie frame using accelerated life and numerical test," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 221-232.
    15. Wei Jiang & Yanhe Xu & Yahui Shan & Han Liu, 2018. "Degradation Tendency Measurement of Aircraft Engines Based on FEEMD Permutation Entropy and Regularized Extreme Learning Machine Using Multi-Sensor Data," Energies, MDPI, vol. 11(12), pages 1-18, November.
    16. Xu, Yanwen & Kohtz, Sara & Boakye, Jessica & Gardoni, Paolo & Wang, Pingfeng, 2023. "Physics-informed machine learning for reliability and systems safety applications: State of the art and challenges," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    17. Jia-Qi, Liu & Yun-Wen, Feng & Da, Teng & Jun-Yu, Chen & Cheng, Lu, 2023. "Operational reliability evaluation and analysis framework of civil aircraft complex system based on intelligent extremum machine learning model," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    18. Bui, Ha & Sakurahara, Tatsuya & Pence, Justin & Reihani, Seyed & Kee, Ernie & Mohaghegh, Zahra, 2019. "An algorithm for enhancing spatiotemporal resolution of probabilistic risk assessment to address emergent safety concerns in nuclear power plants," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 405-428.
    19. Junjie Lu & Feng Lu & Jinquan Huang, 2018. "Performance Estimation and Fault Diagnosis Based on Levenberg–Marquardt Algorithm for a Turbofan Engine," Energies, MDPI, vol. 11(1), pages 1-18, January.
    20. Gao, Haifeng & Wang, Anjenq & Zio, Enrico & Bai, Guangchen, 2020. "An integrated reliability approach with improved importance sampling for low-cycle fatigue damage prediction of turbine disks," Reliability Engineering and System Safety, Elsevier, vol. 199(C).
    21. Zhang, Wei & Li, Xiang & Ma, Hui & Luo, Zhong & Li, Xu, 2021. "Transfer learning using deep representation regularization in remaining useful life prediction across operating conditions," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    22. Wang, Run-Zi & Gu, Hang-Hang & Zhu, Shun-Peng & Li, Kai-Shang & Wang, Ji & Wang, Xiao-Wei & Hideo, Miura & Zhang, Xian-Cheng & Tu, Shan-Tung, 2022. "A data-driven roadmap for creep-fatigue reliability assessment and its implementation in low-pressure turbine disk at elevated temperatures," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    23. Xia, Jun & Feng, Yunwen & Teng, Da & Chen, Junyu & Song, Zhicen, 2022. "Distance self-attention network method for remaining useful life estimation of aeroengine with parallel computing," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    24. Sun, Bo & Fan, Xuejun & van Driel, Willem & Cui, Chengqiang & Zhang, Guoqi, 2018. "A stochastic process based reliability prediction method for LED driver," Reliability Engineering and System Safety, Elsevier, vol. 178(C), pages 140-146.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jan M. Smolarski & Jose G. Vega, 2013. "Extreme events: a study of small oil and gas firms," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 53(3), pages 809-836, September.
    2. Park, Chan Y. & Kim, Nam H. & Haftka, Raphael T., 2014. "How coupon and element tests reduce conservativeness in element failure prediction," Reliability Engineering and System Safety, Elsevier, vol. 123(C), pages 123-136.
    3. Riley, Matthew E., 2015. "Evidence-based quantification of uncertainties induced via simulation-based modeling," Reliability Engineering and System Safety, Elsevier, vol. 133(C), pages 79-86.
    4. Tohme, Tony & Vanslette, Kevin & Youcef-Toumi, Kamal, 2020. "A generalized Bayesian approach to model calibration," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    5. Aven, Terje, 2016. "Risk assessment and risk management: Review of recent advances on their foundation," European Journal of Operational Research, Elsevier, vol. 253(1), pages 1-13.
    6. Radaideh, Majdi I. & Borowiec, Katarzyna & Kozlowski, Tomasz, 2019. "Integrated framework for model assessment and advanced uncertainty quantification of nuclear computer codes under Bayesian statistics," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 357-377.
    7. Li, Xiaoyue & Yang, Yinfei & Li, Liang & Zhao, Guolong & He, Ning, 2020. "Uncertainty quantification in machining deformation based on Bayesian network," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    8. Park, Inseok & Grandhi, Ramana V., 2014. "A Bayesian statistical method for quantifying model form uncertainty and two model combination methods," Reliability Engineering and System Safety, Elsevier, vol. 129(C), pages 46-56.
    9. Sankararaman, Shankar & Mahadevan, Sankaran, 2015. "Integration of model verification, validation, and calibration for uncertainty quantification in engineering systems," Reliability Engineering and System Safety, Elsevier, vol. 138(C), pages 194-209.
    10. Liu, Di & Wang, Shaoping & Zhang, Chao & Tomovic, Mileta, 2018. "Bayesian model averaging based reliability analysis method for monotonic degradation dataset based on inverse Gaussian process and Gamma process," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 25-38.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:146:y:2016:i:c:p:1-12. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.