IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v185y2019icp405-428.html
   My bibliography  Save this article

An algorithm for enhancing spatiotemporal resolution of probabilistic risk assessment to address emergent safety concerns in nuclear power plants

Author

Listed:
  • Bui, Ha
  • Sakurahara, Tatsuya
  • Pence, Justin
  • Reihani, Seyed
  • Kee, Ernie
  • Mohaghegh, Zahra

Abstract

Emergent safety concerns often involve complex spatiotemporal phenomena. In addressing these concerns, the classical Probabilistic Risk Assessment (PRA) of Nuclear Power Plants (NPPs) has limitations in generating the required resolution for risk estimations. The existing dynamic PRAs have yet to demonstrate their feasibility for implementation in a plant. In addition, due to the widespread use of classical PRA in the nuclear industry and by the regulatory agency, a transition to a fully dynamic PRA would require a significant investment of resources. As a more feasible alternative, the authors have developed the Integrated PRA (I-PRA) methodology to add realism to risk estimations by explicitly incorporating time and space into underlying models of the events in the plant PRA while avoiding significant changes to its structure. In I-PRA, the failure mechanisms associated with the areas of concern (e.g., fire, Generic Safety Issue 191) were modeled in separate simulation modules, which were then integrated with the plant PRA through a probabilistic interface. This paper (i) provides theoretical foundations for the incorporation of time and space into PRA and (ii) introduces an algorithm that helps execute I-PRA in a way to gradually enhance spatiotemporal resolution of plant PRAs to efficiently address emergent safety concerns.

Suggested Citation

  • Bui, Ha & Sakurahara, Tatsuya & Pence, Justin & Reihani, Seyed & Kee, Ernie & Mohaghegh, Zahra, 2019. "An algorithm for enhancing spatiotemporal resolution of probabilistic risk assessment to address emergent safety concerns in nuclear power plants," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 405-428.
  • Handle: RePEc:eee:reensy:v:185:y:2019:i:c:p:405-428
    DOI: 10.1016/j.ress.2019.01.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832018302850
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2019.01.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zio, E., 2009. "Reliability engineering: Old problems and new challenges," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 125-141.
    2. Jack P. C. Kleijnen, 2015. "Response Surface Methodology," International Series in Operations Research & Management Science, in: Michael C Fu (ed.), Handbook of Simulation Optimization, edition 127, chapter 0, pages 81-104, Springer.
    3. Ronald L. Iman & Jon C. Helton, 1991. "The Repeatability of Uncertainty and Sensitivity Analyses for Complex Probabilistic Risk Assessments," Risk Analysis, John Wiley & Sons, vol. 11(4), pages 591-606, December.
    4. Sakurahara, Tatsuya & Mohaghegh, Zahra & Reihani, Seyed & Kee, Ernie & Brandyberry, Mark & Rodgers, Shawn, 2018. "An integrated methodology for spatio-temporal incorporation of underlying failure mechanisms into fire probabilistic risk assessment of nuclear power plants," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 242-257.
    5. Mohaghegh, Zahra & Kazemi, Reza & Mosleh, Ali, 2009. "Incorporating organizational factors into Probabilistic Risk Assessment (PRA) of complex socio-technical systems: A hybrid technique formalization," Reliability Engineering and System Safety, Elsevier, vol. 94(5), pages 1000-1018.
    6. Yuan, X.-X. & Pandey, M.D., 2009. "A nonlinear mixed-effects model for degradation data obtained from in-service inspections," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 509-519.
    7. Sakurahara, Tatsuya & Schumock, Grant & Reihani, Seyed & Kee, Ernie & Mohaghegh, Zahra, 2019. "Simulation-Informed Probabilistic Methodology for Common Cause Failure Analysis," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 84-99.
    8. Sallaberry, C.J. & Helton, J.C. & Hora, S.C., 2008. "Extension of Latin hypercube samples with correlated variables," Reliability Engineering and System Safety, Elsevier, vol. 93(7), pages 1047-1059.
    9. Ajit Kumar Verma & Srividya Ajit & Durga Rao Karanki, 2016. "Reliability and Safety Engineering," Springer Series in Reliability Engineering, Springer, edition 2, number 978-1-4471-6269-8, March.
    10. Hansen, Clifford W. & Helton, Jon C. & Sallaberry, Cédric J., 2012. "Use of replicated Latin hypercube sampling to estimate sampling variance in uncertainty and sensitivity analysis results for the geologic disposal of radioactive waste," Reliability Engineering and System Safety, Elsevier, vol. 107(C), pages 139-148.
    11. Zhu, Shun-Peng & Huang, Hong-Zhong & Peng, Weiwen & Wang, Hai-Kun & Mahadevan, Sankaran, 2016. "Probabilistic Physics of Failure-based framework for fatigue life prediction of aircraft gas turbine discs under uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 146(C), pages 1-12.
    12. Chookah, M. & Nuhi, M. & Modarres, M., 2011. "A probabilistic physics-of-failure model for prognostic health management of structures subject to pitting and corrosion-fatigue," Reliability Engineering and System Safety, Elsevier, vol. 96(12), pages 1601-1610.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tatsuya Sakurahara & Seyed Reihani & Ernie Kee & Zahra Mohaghegh, 2020. "Global importance measure methodology for integrated probabilistic risk assessment," Journal of Risk and Reliability, , vol. 234(2), pages 377-396, April.
    2. Hong Xu & Baorui Zhang, 2022. "Diverse and Flexible Coping Strategy for Nuclear Safety: Opportunities and Challenges," Energies, MDPI, vol. 15(17), pages 1-21, August.
    3. Justin Pence & Zahra Mohaghegh, 2020. "A Discourse on the Incorporation of Organizational Factors into Probabilistic Risk Assessment: Key Questions and Categorical Review," Risk Analysis, John Wiley & Sons, vol. 40(6), pages 1183-1211, June.
    4. Sakurahara, Tatsuya & O'Shea, Nicholas & Cheng, Wen-Chi & Zhang, Sai & Reihani, Seyed & Kee, Ernie & Mohaghegh, Zahra, 2019. "Integrating renewal process modeling with Probabilistic Physics-of-Failure: Application to Loss of Coolant Accident (LOCA) frequency estimations in nuclear power plants," Reliability Engineering and System Safety, Elsevier, vol. 190(C), pages 1-1.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sakurahara, Tatsuya & O'Shea, Nicholas & Cheng, Wen-Chi & Zhang, Sai & Reihani, Seyed & Kee, Ernie & Mohaghegh, Zahra, 2019. "Integrating renewal process modeling with Probabilistic Physics-of-Failure: Application to Loss of Coolant Accident (LOCA) frequency estimations in nuclear power plants," Reliability Engineering and System Safety, Elsevier, vol. 190(C), pages 1-1.
    2. Sakurahara, Tatsuya & Schumock, Grant & Reihani, Seyed & Kee, Ernie & Mohaghegh, Zahra, 2019. "Simulation-Informed Probabilistic Methodology for Common Cause Failure Analysis," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 84-99.
    3. Tatsuya Sakurahara & Seyed Reihani & Ernie Kee & Zahra Mohaghegh, 2020. "Global importance measure methodology for integrated probabilistic risk assessment," Journal of Risk and Reliability, , vol. 234(2), pages 377-396, April.
    4. Justin Pence & Zahra Mohaghegh, 2020. "A Discourse on the Incorporation of Organizational Factors into Probabilistic Risk Assessment: Key Questions and Categorical Review," Risk Analysis, John Wiley & Sons, vol. 40(6), pages 1183-1211, June.
    5. Hou, Tianfeng & Nuyens, Dirk & Roels, Staf & Janssen, Hans, 2019. "Quasi-Monte Carlo based uncertainty analysis: Sampling efficiency and error estimation in engineering applications," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    6. Carole Duval & Geoffrey Fallet-Fidry & Benoît Iung & Philippe Weber & Eric Levrat, 2012. "A Bayesian network-based integrated risk analysis approach for industrial systems: application to heat sink system and prospects development," Journal of Risk and Reliability, , vol. 226(5), pages 488-507, October.
    7. Tan, Samson & Moinuddin, Khalid, 2019. "Systematic review of human and organizational risks for probabilistic risk analysis in high-rise buildings," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 233-250.
    8. Penttinen, Jussi-Pekka & Niemi, Arto & Gutleber, Johannes & Koskinen, Kari T. & Coatanéa, Eric & Laitinen, Jouko, 2019. "An open modelling approach for availability and reliability of systems," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 387-399.
    9. Takeda, Satoshi & Kitada, Takanori, 2021. "Simple method based on sensitivity coefficient for stochastic uncertainty analysis in probabilistic risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    10. Konstantinos Kazaras & Konstantinos Kirytopoulos, 2014. "Challenges for current quantitative risk assessment (QRA) models to describe explicitly the road tunnel safety level," Journal of Risk Research, Taylor & Francis Journals, vol. 17(8), pages 953-968, September.
    11. Jia-Qi, Liu & Yun-Wen, Feng & Da, Teng & Jun-Yu, Chen & Cheng, Lu, 2023. "Operational reliability evaluation and analysis framework of civil aircraft complex system based on intelligent extremum machine learning model," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    12. Aven, Terje & Zio, Enrico, 2011. "Some considerations on the treatment of uncertainties in risk assessment for practical decision making," Reliability Engineering and System Safety, Elsevier, vol. 96(1), pages 64-74.
    13. Xu, Yanwen & Kohtz, Sara & Boakye, Jessica & Gardoni, Paolo & Wang, Pingfeng, 2023. "Physics-informed machine learning for reliability and systems safety applications: State of the art and challenges," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    14. Gao, Haifeng & Wang, Anjenq & Zio, Enrico & Bai, Guangchen, 2020. "An integrated reliability approach with improved importance sampling for low-cycle fatigue damage prediction of turbine disks," Reliability Engineering and System Safety, Elsevier, vol. 199(C).
    15. Pence, Justin & Sakurahara, Tatsuya & Zhu, Xuefeng & Mohaghegh, Zahra & Ertem, Mehmet & Ostroff, Cheri & Kee, Ernie, 2019. "Data-theoretic methodology and computational platform to quantify organizational factors in socio-technical risk analysis," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 240-260.
    16. Shen-Tsu Wang, 2016. "Integrating grey sequencing with the genetic algorithm--immune algorithm to optimise touch panel cover glass polishing process parameter design," International Journal of Production Research, Taylor & Francis Journals, vol. 54(16), pages 4882-4893, August.
    17. Asadzadeh, S.M. & Azadeh, A., 2014. "An integrated systemic model for optimization of condition-based maintenance with human error," Reliability Engineering and System Safety, Elsevier, vol. 124(C), pages 117-131.
    18. Rajkumar Bhimgonda Patil & Basavraj S Kothavale & Laxman Yadu Waghmode, 2019. "Selection of time-to-failure model for computerized numerical control turning center based on the assessment of trends in maintenance data," Journal of Risk and Reliability, , vol. 233(2), pages 105-117, April.
    19. Yek, Peter Nai Yuh & Cheng, Yoke Wang & Liew, Rock Keey & Wan Mahari, Wan Adibah & Ong, Hwai Chyuan & Chen, Wei-Hsin & Peng, Wanxi & Park, Young-Kwon & Sonne, Christian & Kong, Sieng Huat & Tabatabaei, 2021. "Progress in the torrefaction technology for upgrading oil palm wastes to energy-dense biochar: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    20. Qin, Caiyan & Kim, Joong Bae & Lee, Bong Jae, 2019. "Performance analysis of a direct-absorption parabolic-trough solar collector using plasmonic nanofluids," Renewable Energy, Elsevier, vol. 143(C), pages 24-33.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:185:y:2019:i:c:p:405-428. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.