IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v253y2025ics0951832024006598.html
   My bibliography  Save this article

Probabilistic seismic risk analysis of electrical substations considering equipment-to-equipment seismic failure correlations

Author

Listed:
  • Liang, Huangbin
  • Xie, Qiang

Abstract

When an earthquake occurs, electrical equipment in a substation exhibits a certain level of seismic failure correlation since they suffer similar ground motions and share similar structural characteristics. However, this equipment-to-equipment seismic failure correlation (E2ESFC) was neglected in previous substation-level probabilistic seismic risk analyses due to the lack of awareness and practical approach. To investigate the effect of different degrees of the E2ESFC on the substation seismic risk, an efficient method for considering partially correlated seismic failure was proposed. The concepts of “damage demand probability†and “damage capacity probability†were derived from the equipment's fragility curve. Then the partial correlation of equipment's capacity probabilities can be easily introduced and incorporated into the substation-level risk analysis through the combination of Copula functions and the Monte Carlo simulation. A case study on a real-world 220/110 kV substation using an equi-correlation model demonstrated that ignoring the E2ESFC among the same type of equipment will lead to an underestimate of the probability of seeing high seismic loss. Furthermore, a general method to assess the E2ESFC coefficients between equipment was also proposed, laying the foundation to facilitate applications of the introduced E2ESFC simulation method and to generate a more reliable system risk assessment result.

Suggested Citation

  • Liang, Huangbin & Xie, Qiang, 2025. "Probabilistic seismic risk analysis of electrical substations considering equipment-to-equipment seismic failure correlations," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
  • Handle: RePEc:eee:reensy:v:253:y:2025:i:c:s0951832024006598
    DOI: 10.1016/j.ress.2024.110588
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832024006598
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2024.110588?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:253:y:2025:i:c:s0951832024006598. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.