IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v252y2024ics0951832024005519.html
   My bibliography  Save this article

Dynamic risk assessment of Uncertain Random System considering operator's simple emergency-stop action in short time window

Author

Listed:
  • Hu, Lunhu
  • Pan, Xing
  • Kang, Rui
  • Chu, Jian
  • Gao, Yunfeng
  • Xue, Zhong
  • Baoyin, Hexi

Abstract

Human-machine systems can be considered as typical Uncertain Random Systems (URS). In human-machine systems, operator's simple emergency-stop actions act as a vital soft barrier. Conventional Human Reliability Analyses face challenges in evaluating operator's simple emergency-stop action due to their static characteristics, incompatibility with short time windows, and problems posed by small samples. This paper provides a novel solution to risk assessment of human-machine systems involving operator's simple emergency-stop mechanism. Specifically, an evaluation method of operator's simple emergency-stop action is established, where human cognition is decomposed according to its temporal and logical dimensions, key indicators of human sub-cognition are evaluated, and uncertainty theory is used to integrate these indicators. The output of proposed method is uncertainty of operator's behavior (UOB), which can offer more information than traditional Human Error Probability (HEP) and can be readily converted into uncertainty of human error. Further, a precise simulation method for dynamic risk assessment of Uncertain Random Systems is developed, in which the integration of the UOB is achieved. A case study demonstrates the effectiveness of the proposed methods, and its results show that the proposed methods can clearly reflect the differences in system risk under short time window conditions that have minor distinctions.

Suggested Citation

  • Hu, Lunhu & Pan, Xing & Kang, Rui & Chu, Jian & Gao, Yunfeng & Xue, Zhong & Baoyin, Hexi, 2024. "Dynamic risk assessment of Uncertain Random System considering operator's simple emergency-stop action in short time window," Reliability Engineering and System Safety, Elsevier, vol. 252(C).
  • Handle: RePEc:eee:reensy:v:252:y:2024:i:c:s0951832024005519
    DOI: 10.1016/j.ress.2024.110479
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832024005519
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2024.110479?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:252:y:2024:i:c:s0951832024005519. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.