IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v235y2023ics0951832023001746.html
   My bibliography  Save this article

Error modelling and motion reliability analysis of a multi-DOF redundant parallel mechanism with hybrid uncertainties

Author

Listed:
  • Zeng, Chen-dong
  • Qiu, Zhi-cheng
  • Zhang, Fen-hua
  • Zhang, Xian-min

Abstract

Accuracy is one of the most important properties of mechanisms. However, the inherent uncertainties will cause an error between the actual motion and the desired motion, leading to a motion reliability problem. The error model and motion reliability of a type of multi-DOF (degrees of freedom) redundant parallel mechanism (MDRPM) with hybrid uncertainties are studied. Firstly, the error model of the mechanism is established and verified. Then, the motion inside the joints is analyzed, and the joint clearance is regarded as an interval variable, while the other variables are treated as random variables. On this basis, a hybrid motion reliability method based on the quasi-Monte Carlo simulation method (QMCSM) is developed for a mechanism with hybrid uncertainties. Compared with the traditional simulation method, the amount of computation required by the QMCSM is significantly reduced, and it is more suitable for solving the large-scale motion reliability problem of the MDRPM. A numerical simulation and experiments are performed. The simulation results show that the feasibility and adaptability of the motion reliability method in this paper are different. The experimental results demonstrate that the error model is effective, so the motion reliability analysis based on the error model is reliable.

Suggested Citation

  • Zeng, Chen-dong & Qiu, Zhi-cheng & Zhang, Fen-hua & Zhang, Xian-min, 2023. "Error modelling and motion reliability analysis of a multi-DOF redundant parallel mechanism with hybrid uncertainties," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
  • Handle: RePEc:eee:reensy:v:235:y:2023:i:c:s0951832023001746
    DOI: 10.1016/j.ress.2023.109259
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832023001746
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2023.109259?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hou, Tianfeng & Nuyens, Dirk & Roels, Staf & Janssen, Hans, 2019. "Quasi-Monte Carlo based uncertainty analysis: Sampling efficiency and error estimation in engineering applications," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    2. Yang, Bin & Yang, Wenyu, 2023. "Modular approach to kinematic reliability analysis of industrial robots," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    3. Wu, Weidong & Rao, S.S., 2007. "Uncertainty analysis and allocation of joint tolerances in robot manipulators based on interval analysis," Reliability Engineering and System Safety, Elsevier, vol. 92(1), pages 54-64.
    4. Chen, Junhua & Chen, Longmiao & Qian, Linfang & Chen, Guangsong & Zhou, Shijie, 2022. "Time-dependent kinematic reliability analysis of gear mechanism based on sequential decoupling strategy and saddle-point approximation," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    5. Jiang, Chen & Qiu, Haobo & Yang, Zan & Chen, Liming & Gao, Liang & Li, Peigen, 2019. "A general failure-pursuing sampling framework for surrogate-based reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 47-59.
    6. Chen, Zequan & Li, Guofa & He, Jialong & Yang, Zhaojun & Wang, Jili, 2022. "Adaptive structural reliability analysis method based on confidence interval squeezing," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    7. Liu, Xiaohang & Zheng, Shansuo & Wu, Xinxia & Chen, Dianxin & He, Jinchuan, 2021. "Research on a seismic connectivity reliability model of power systems based on the quasi-Monte Carlo method," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    8. Zhang, Qian & Pan, Ning & Meloni, Marco & Lu, Dong & Cai, Jianguo & Feng, Jian, 2021. "Reliability analysis of radially retractable roofs with revolute joint clearances," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    9. Zhang, Dequan & Shen, Shuoshuo & Wu, Jinhui & Wang, Fang & Han, Xu, 2023. "Kinematic trajectory accuracy reliability analysis for industrial robots considering intercorrelations among multi-point positioning errors," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    10. Zhang, Yu & Dong, You & Xu, Jun, 2023. "An accelerated active learning Kriging model with the distance-based subdomain and a new stopping criterion for reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    11. Ökten, Giray & Liu, Yaning, 2021. "Randomized quasi-Monte Carlo methods in global sensitivity analysis," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huang, Peng & Li, He & Gu, Yingkui & Qiu, Guangqi, 2024. "An extended moment-based trajectory accuracy reliability analysis method of robot manipulators with random and interval uncertainties," Reliability Engineering and System Safety, Elsevier, vol. 246(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Peng & Gu, Yingkui & Li, He & Yazdi, Mohammad & Qiu, Guangqi, 2023. "An Optimal Tolerance Design Approach of Robot Manipulators for Positioning Accuracy Reliability," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    2. Li, Guofa & Wang, Tianzhe & Chen, Zequan & He, Jialong & Wang, Xiaoye & Du, Xuejiao, 2023. "RBIK-SS: A parallel adaptive structural reliability analysis method for rare failure events," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    3. Wu, Jinhui & Tao, Yourui & Han, Xu, 2023. "Polynomial chaos expansion approximation for dimension-reduction model-based reliability analysis method and application to industrial robots," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    4. Wang, Yanzhong & Xie, Bin & E, Shiyuan, 2022. "Adaptive relevance vector machine combined with Markov-chain-based importance sampling for reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    5. Yang, Bin & Yang, Wenyu, 2023. "Modular approach to kinematic reliability analysis of industrial robots," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    6. Zhang, Dequan & Shen, Shuoshuo & Wu, Jinhui & Wang, Fang & Han, Xu, 2023. "Kinematic trajectory accuracy reliability analysis for industrial robots considering intercorrelations among multi-point positioning errors," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    7. Zhang, Yu & Dong, You & Frangopol, Dan M., 2024. "An error-based stopping criterion for spherical decomposition-based adaptive Kriging model and rare event estimation," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    8. Wei, Pengfei & Zheng, Yu & Fu, Jiangfeng & Xu, Yuannan & Gao, Weikai, 2023. "An expected integrated error reduction function for accelerating Bayesian active learning of failure probability," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    9. Huang, Peng & Li, He & Gu, Yingkui & Qiu, Guangqi, 2024. "An extended moment-based trajectory accuracy reliability analysis method of robot manipulators with random and interval uncertainties," Reliability Engineering and System Safety, Elsevier, vol. 246(C).
    10. Yang, Meide & Zhang, Dequan & Jiang, Chao & Han, Xu & Li, Qing, 2021. "A hybrid adaptive Kriging-based single loop approach for complex reliability-based design optimization problems," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    11. Mercadier Cécile & Ressel Paul, 2021. "Hoeffding–Sobol decomposition of homogeneous co-survival functions: from Choquet representation to extreme value theory application," Dependence Modeling, De Gruyter, vol. 9(1), pages 179-198, January.
    12. Nguyen, Phong T.T. & Manuel, Lance, 2024. "Uncertainty quantification in low-probability response estimation using sliced inverse regression and polynomial chaos expansion," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    13. He, Wanxin & Wang, Yiyuan & Li, Gang & Zhou, Jinhang, 2024. "A novel maximum entropy method based on the B-spline theory and the low-discrepancy sequence for complex probability distribution reconstruction," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    14. Wang, Dapeng & Qiu, Haobo & Gao, Liang & Jiang, Chen, 2021. "A single-loop Kriging coupled with subset simulation for time-dependent reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    15. Pedram Asef & Marzia Milan & Andrew Lapthorn & Sanjeevikumar Padmanaban, 2021. "Future Trends and Aging Analysis of Battery Energy Storage Systems for Electric Vehicles," Sustainability, MDPI, vol. 13(24), pages 1-28, December.
    16. Jayaraman, Deepan & Ramu, Palaniappan, 2023. "L-moments and Bayesian inference for probabilistic risk assessment with scarce samples that include extremes," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    17. Cui, Da & Wang, Guoqiang & Lu, Yanpeng & Sun, Kangkang, 2020. "Reliability design and optimization of the planetary gear by a GA based on the DEM and Kriging model," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    18. Jung, WoongHee & Taflanidis, Alexandros A., 2023. "Efficient global sensitivity analysis for high-dimensional outputs combining data-driven probability models and dimensionality reduction," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    19. Krupenev, Dmitry & Boyarkin, Denis & Iakubovskii, Dmitrii, 2020. "Improvement in the computational efficiency of a technique for assessing the reliability of electric power systems based on the Monte Carlo method," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    20. Xu, Zhaoyi & Saleh, Joseph Homer, 2021. "Machine learning for reliability engineering and safety applications: Review of current status and future opportunities," Reliability Engineering and System Safety, Elsevier, vol. 211(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:235:y:2023:i:c:s0951832023001746. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.