IDEAS home Printed from https://ideas.repec.org/a/sae/risrel/v230y2016i6p570-578.html
   My bibliography  Save this article

Multidisciplinary reliability design optimization using an enhanced saddlepoint approximation in the framework of sequential optimization and reliability analysis

Author

Listed:
  • Rong Yuan
  • Debiao Meng
  • Haiqing Li

Abstract

For high reliability calculation efficiency and evaluation accuracy, saddlepoint approximation technology has been introduced into design and optimization under uncertainties. When using saddlepoint approximation, there are two prerequisites: all random information is tractable and saddlepoint equations are easy to be solved. However, the above requirements cannot always be met in complex multidisciplinary systems. Random variables sometimes are intractable, or saddlepoint equations are highly nonlinear. To tackle these problems, in this study, an efficient reliability-based multidisciplinary design optimization using the combination method of saddlepoint approximation and third-moment is given. A simplified alternative cumulant generating function can be constructed by saddlepoint approximation and third-moment with the first, second and third moments of a random variable effectively. Then, this cumulant generating function can be utilized to calculate the cumulative distribution function and the probability density function of this random variable approximately. Moreover, to obtain better efficiency, the framework of sequential optimization and reliability analysis is introduced in this study. The corresponding formula of the proposed reliability-based multidisciplinary design optimization is given in detail. Two test problems are solved to show the application of the proposed method.

Suggested Citation

  • Rong Yuan & Debiao Meng & Haiqing Li, 2016. "Multidisciplinary reliability design optimization using an enhanced saddlepoint approximation in the framework of sequential optimization and reliability analysis," Journal of Risk and Reliability, , vol. 230(6), pages 570-578, December.
  • Handle: RePEc:sae:risrel:v:230:y:2016:i:6:p:570-578
    DOI: 10.1177/1748006X16673500
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1748006X16673500
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1748006X16673500?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Huang, Beiqing & Du, Xiaoping, 2008. "Probabilistic uncertainty analysis by mean-value first order Saddlepoint Approximation," Reliability Engineering and System Safety, Elsevier, vol. 93(2), pages 325-336.
    2. Zhu, Shun-Peng & Huang, Hong-Zhong & Peng, Weiwen & Wang, Hai-Kun & Mahadevan, Sankaran, 2016. "Probabilistic Physics of Failure-based framework for fatigue life prediction of aircraft gas turbine discs under uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 146(C), pages 1-12.
    3. Xiong, Jian & Wong, Augustine & Salopek, Donna, 2005. "Saddlepoint approximations to option price in a general equilibrium model," Statistics & Probability Letters, Elsevier, vol. 71(4), pages 361-369, March.
    4. Xiaoyan Su & Sankaran Mahadevan & Peida Xu & Yong Deng, 2015. "Dependence Assessment in Human Reliability Analysis Using Evidence Theory and AHP," Risk Analysis, John Wiley & Sons, vol. 35(7), pages 1296-1316, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Takashi Kato & Jun Sekine & Kenichi Yoshikawa, 2013. "Order Estimates for the Exact Lugannani-Rice Expansion," Papers 1310.3347, arXiv.org, revised Jun 2014.
    2. Liu, Xintian & Mao, Kui & Wang, Xiaolan & Wang, Xu & Wang, Yansong, 2020. "A modified quality loss model of service life prediction for products via wear regularity," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    3. Mohammad Ali Farsi & S. Masood Hosseini, 2019. "Statistical distributions comparison for remaining useful life prediction of components via ANN," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 10(3), pages 429-436, June.
    4. Yuan, Xiukai & Lu, Zhenzhou, 2014. "Efficient approach for reliability-based optimization based on weighted importance sampling approach," Reliability Engineering and System Safety, Elsevier, vol. 132(C), pages 107-114.
    5. Bui, Ha & Sakurahara, Tatsuya & Pence, Justin & Reihani, Seyed & Kee, Ernie & Mohaghegh, Zahra, 2019. "An algorithm for enhancing spatiotemporal resolution of probabilistic risk assessment to address emergent safety concerns in nuclear power plants," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 405-428.
    6. Shengwen Yin & Keliang Jin & Yu Bai & Wei Zhou & Zhonggang Wang, 2023. "Solution-Space-Reduction-Based Evidence Theory Method for Stiffness Evaluation of Air Springs with Epistemic Uncertainty," Mathematics, MDPI, vol. 11(5), pages 1-19, March.
    7. Zhang, Wei & Li, Xiang & Ma, Hui & Luo, Zhong & Li, Xu, 2021. "Transfer learning using deep representation regularization in remaining useful life prediction across operating conditions," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    8. Kusi-Sarpong, Simonov & Orji, Ifeyinwa Juliet & Gupta, Himanshu & Kunc, Martin, 2021. "Risks associated with the implementation of big data analytics in sustainable supply chains," Omega, Elsevier, vol. 105(C).
    9. Kristensen, Dennis & Mele, Antonio, 2011. "Adding and subtracting Black-Scholes: A new approach to approximating derivative prices in continuous-time models," Journal of Financial Economics, Elsevier, vol. 102(2), pages 390-415.
    10. Paglioni, Vincent P. & Groth, Katrina M., 2022. "Dependency definitions for quantitative human reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    11. Yutong Chen & Yongchuan Tang, 2021. "An Improved Approach of Incomplete Information Fusion and Its Application in Sensor Data-Based Fault Diagnosis," Mathematics, MDPI, vol. 9(11), pages 1-16, June.
    12. Yiwei Wang & Christian Gogu & Nicolas Binaud & Christian Bes & Raphael T Haftka & Nam-Ho Kim, 2018. "Predictive airframe maintenance strategies using model-based prognostics," Journal of Risk and Reliability, , vol. 232(6), pages 690-709, December.
    13. Sarat Sivaprasad & Cameron A. MacKenzie, 2018. "The Hurwicz Decision Rule’s Relationship to Decision Making with the Triangle and Beta Distributions and Exponential Utility," Decision Analysis, INFORMS, vol. 15(3), pages 139-153, September.
    14. Zhou, Di & Pan, Ershun & Zhang, Xufang & Zhang, Yimin, 2020. "Dynamic Model-based Saddle-point Approximation for Reliability and Reliability-based Sensitivity Analysis," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    15. Lei Chen & Ling Diao & Jun Sang, 2019. "A novel weighted evidence combination rule based on improved entropy function with a diagnosis application," International Journal of Distributed Sensor Networks, , vol. 15(1), pages 15501477188, January.
    16. SakallI, Ümit Sami & Baykoç, Ömer Faruk, 2011. "An optimization approach for brass casting blending problem under aletory and epistemic uncertainties," International Journal of Production Economics, Elsevier, vol. 133(2), pages 708-718, October.
    17. Ning-Cong Xiao & Yan-Feng Li & Le Yu & Zhonglai Wang & Hong-Zhong Huang, 2014. "Saddlepoint approximation-based reliability analysis method for structural systems with parameter uncertainties," Journal of Risk and Reliability, , vol. 228(5), pages 529-540, October.
    18. Chen, Gaige & Chen, Jinglong & Zi, Yanyang & Miao, Huihui, 2017. "Hyper-parameter optimization based nonlinear multistate deterioration modeling for deterioration level assessment and remaining useful life prognostics," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 517-526.
    19. Ahmed Zohair Djeddi & Ahmed Hafaifa & Abdellah Kouzou & Salam Abudura, 2017. "Exploration of reliability algorithms using modified Weibull distribution: application on gas turbine," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 8(2), pages 1885-1894, November.
    20. Muhammad Mohsin & Yin Hengbin & Zhang Luyao & Li Rui & Qian Chong & Ana Mehak, 2022. "An Application of Multiple-Criteria Decision Analysis for Risk Prioritization and Management: A Case Study of the Fisheries Sector in Pakistan," Sustainability, MDPI, vol. 14(14), pages 1-21, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:risrel:v:230:y:2016:i:6:p:570-578. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.