IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v253y2025ics0951832024006513.html
   My bibliography  Save this article

Remaining useful life prediction of nuclear reactor control rod drive mechanism based on dynamic temporal convolutional network

Author

Listed:
  • Wang, Chen
  • Zhang, Liming
  • Chen, Ling
  • Tan, Tian
  • Zhang, Cong

Abstract

The control rod drive mechanism (CRDM) is a critical equipment of the nuclear reactor, and the prediction of its remaining useful life (RUL) is important for the efficient maintenance and ensuring the safe, reliable operation of nuclear power plants. In this paper, a novel framework for the RUL prediction of CRDM is proposed, which is a dynamic temporal convolution network (DTCN) based on dynamic activation function and attention mechanism. Firstly, the temporal convolution network (TCN) is used as the backbone of the prediction model, to extract the temporal dependence of the input data. Next, the dynamic activation function DReLU is integrated into the TCN, which can dynamically activate features and capture variable degradation information. Then, introducing the attention mechanism improves the influence of important high-level features extracted by the network on RUL prediction, thereby improving the efficiency of feature extraction in the network. Finally, the DTCN outputs the predicted RUL by performing non-linear mapping on the extracted features. The CRDM accelerated life test platform is established and a series of experiments are conducted using the collected CRDM full-life vibration dataset. The results demonstrated the performance and advantages of the proposed method.

Suggested Citation

  • Wang, Chen & Zhang, Liming & Chen, Ling & Tan, Tian & Zhang, Cong, 2025. "Remaining useful life prediction of nuclear reactor control rod drive mechanism based on dynamic temporal convolutional network," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
  • Handle: RePEc:eee:reensy:v:253:y:2025:i:c:s0951832024006513
    DOI: 10.1016/j.ress.2024.110580
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832024006513
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2024.110580?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:253:y:2025:i:c:s0951832024006513. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.