IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v253y2025ics0951832024006513.html
   My bibliography  Save this article

Remaining useful life prediction of nuclear reactor control rod drive mechanism based on dynamic temporal convolutional network

Author

Listed:
  • Wang, Chen
  • Zhang, Liming
  • Chen, Ling
  • Tan, Tian
  • Zhang, Cong

Abstract

The control rod drive mechanism (CRDM) is a critical equipment of the nuclear reactor, and the prediction of its remaining useful life (RUL) is important for the efficient maintenance and ensuring the safe, reliable operation of nuclear power plants. In this paper, a novel framework for the RUL prediction of CRDM is proposed, which is a dynamic temporal convolution network (DTCN) based on dynamic activation function and attention mechanism. Firstly, the temporal convolution network (TCN) is used as the backbone of the prediction model, to extract the temporal dependence of the input data. Next, the dynamic activation function DReLU is integrated into the TCN, which can dynamically activate features and capture variable degradation information. Then, introducing the attention mechanism improves the influence of important high-level features extracted by the network on RUL prediction, thereby improving the efficiency of feature extraction in the network. Finally, the DTCN outputs the predicted RUL by performing non-linear mapping on the extracted features. The CRDM accelerated life test platform is established and a series of experiments are conducted using the collected CRDM full-life vibration dataset. The results demonstrated the performance and advantages of the proposed method.

Suggested Citation

  • Wang, Chen & Zhang, Liming & Chen, Ling & Tan, Tian & Zhang, Cong, 2025. "Remaining useful life prediction of nuclear reactor control rod drive mechanism based on dynamic temporal convolutional network," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
  • Handle: RePEc:eee:reensy:v:253:y:2025:i:c:s0951832024006513
    DOI: 10.1016/j.ress.2024.110580
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832024006513
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2024.110580?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Lu & Song, Xiao & Zhou, Zhetao, 2022. "Aircraft engine remaining useful life estimation via a double attention-based data-driven architecture," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    2. Cai, Xiao & Li, Naipeng & Xie, Min, 2024. "RUL prediction for two-phase degrading systems considering physical damage observations," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    3. Xiang, Sheng & Li, Penghua & Huang, Yi & Luo, Jun & Qin, Yi, 2024. "Single gated RNN with differential weighted information storage mechanism and its application to machine RUL prediction," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    4. Wei, Yupeng & Wu, Dazhong & Terpenny, Janis, 2024. "Remaining useful life prediction using graph convolutional attention networks with temporal convolution-aware nested residual connections," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    5. Cao, Yudong & Ding, Yifei & Jia, Minping & Tian, Rushuai, 2021. "A novel temporal convolutional network with residual self-attention mechanism for remaining useful life prediction of rolling bearings," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    6. Fu, Song & Lin, Lin & Wang, Yue & Guo, Feng & Zhao, Minghang & Zhong, Baihong & Zhong, Shisheng, 2024. "MCA-DTCN: A novel dual-task temporal convolutional network with multi-channel attention for first prediction time detection and remaining useful life prediction," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    7. Gao, Pengjie & Wang, Junliang & Shi, Ziqi & Ming, Weiwei & Chen, Ming, 2024. "Long-term temporal attention neural network with adaptive stage division for remaining useful life prediction of rolling bearings," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    8. Li, Wanxiang & Shang, Zhiwu & Gao, Maosheng & Qian, Shiqi & Feng, Zehua, 2022. "Remaining useful life prediction based on transfer multi-stage shrinkage attention temporal convolutional network under variable working conditions," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    9. Wei, Yupeng & Wu, Dazhong & Terpenny, Janis, 2021. "Learning the health index of complex systems using dynamic conditional variational autoencoders," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    10. Zhang, Jian-Xun & Zhang, Jia-Ling & Zhang, Zheng-Xin & Li, Tian-Mei & Si, Xiao-Sheng, 2024. "Remaining useful life prediction for stochastic degrading devices incorporating quantization," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
    11. Li, Jimeng & Mao, Weilin & Yang, Bixin & Meng, Zong & Tong, Kai & Yu, Shancheng, 2024. "RUL prediction of rolling bearings across working conditions based on multi-scale convolutional parallel memory domain adaptation network," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    12. Wang, Shunli & Fan, Yongcun & Jin, Siyu & Takyi-Aninakwa, Paul & Fernandez, Carlos, 2023. "Improved anti-noise adaptive long short-term memory neural network modeling for the robust remaining useful life prediction of lithium-ion batteries," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    13. Zhang, Yuru & Su, Chun & Wu, Jiajun & Liu, Hao & Xie, Mingjiang, 2024. "Trend-augmented and temporal-featured Transformer network with multi-sensor signals for remaining useful life prediction," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Zhiqiang & Zhang, Yujie & Miao, Qiang, 2024. "An attention-based multi-scale temporal convolutional network for remaining useful life prediction," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
    2. Lin, Yan-Hui & Chang, Liang & Guan, Lu-Xin, 2024. "Enhanced stochastic recurrent hybrid model for RUL Predictions via Semi-supervised learning," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    3. Wang, Wei & Song, Honghao & Si, Shubin & Lu, Wenhao & Cai, Zhiqiang, 2024. "Data augmentation based on diffusion probabilistic model for remaining useful life estimation of aero-engines," Reliability Engineering and System Safety, Elsevier, vol. 252(C).
    4. Kim, Gyeongho & Kang, Yun Seok & Yang, Sang Min & Choi, Jae Gyeong & Hwang, Gahyun & Park, Hyung Wook & Lim, Sunghoon, 2025. "Fisher-informed continual learning for remaining useful life prediction of machining tools under varying operating conditions," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
    5. Han, Yan & Hu, Ailin & Huang, Qingqing & Zhang, Yan & Lin, Zhichao & Ma, Jinghua, 2025. "Sinkhorn divergence-based contrast domain adaptation for remaining useful life prediction of rolling bearings under multiple operating conditions," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
    6. Fu, En & Hu, Yanyan & Peng, Kaixiang & Chu, Yuxin, 2024. "Supervised contrastive learning based dual-mixer model for Remaining Useful Life prediction," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    7. Lopez-Salazar, Camilo & Ekwaro-Osire, Stephen & Dabetwar, Shweta & Alemayehu, Fisseha, 2025. "A comprehensive framework for estimating the remaining useful life of Li-ion batteries under limited data conditions with no temporal identifier," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
    8. Xu, Dan & Xiao, Xiaoqi & Liu, Jie & Sui, Shaobo, 2023. "Spatio-temporal degradation modeling and remaining useful life prediction under multiple operating conditions based on attention mechanism and deep learning," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    9. Yan, Jianhai & He, Zhen & He, Shuguang, 2023. "Multitask learning of health state assessment and remaining useful life prediction for sensor-equipped machines," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    10. Yang, Shilong & Tang, Baoping & Wang, Weiying & Yang, Qichao & Hu, Cheng, 2024. "Physics-informed multi-state temporal frequency network for RUL prediction of rolling bearings," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    11. Gao, Pengjie & Wang, Junliang & Shi, Ziqi & Ming, Weiwei & Chen, Ming, 2024. "Long-term temporal attention neural network with adaptive stage division for remaining useful life prediction of rolling bearings," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    12. Ren, Xiangyu & Qin, Yong & Li, Bin & Wang, Biao & Yi, Xiaojian & Jia, Limin, 2024. "A core space gradient projection-based continual learning framework for remaining useful life prediction of machinery under variable operating conditions," Reliability Engineering and System Safety, Elsevier, vol. 252(C).
    13. Xia, Jun & Feng, Yunwen & Teng, Da & Chen, Junyu & Song, Zhicen, 2022. "Distance self-attention network method for remaining useful life estimation of aeroengine with parallel computing," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    14. Cui, Lingli & Shen, Qiang & Xiao, Yongchang & Liu, Dongdong & Wang, Huaqing, 2025. "Sparse graph structure fusion convolutional network for machinery remaining useful life prediction," Reliability Engineering and System Safety, Elsevier, vol. 254(PA).
    15. Zhu, Rong & Chen, Yuan & Peng, Weiwen & Ye, Zhi-Sheng, 2022. "Bayesian deep-learning for RUL prediction: An active learning perspective," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    16. Liu, Yang & Zhou, Guangda & Zhao, Shujian & Li, Liang & Xie, Wenhua & Su, Bengan & Li, Yongwei & Zhao, Zhen, 2025. "A novel two-stage method via adversarial strategy for remaining useful life prediction of bearings under variable conditions," Reliability Engineering and System Safety, Elsevier, vol. 254(PA).
    17. Basora, Luis & Viens, Arthur & Chao, Manuel Arias & Olive, Xavier, 2025. "A benchmark on uncertainty quantification for deep learning prognostics," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
    18. Jiang, Deyin & Chen, Tianyu & Xie, Juanzhang & Cui, Weimin & Song, Bifeng, 2023. "A mechanical system reliability degradation analysis and remaining life estimation method——With the example of an aircraft hatch lock mechanism," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    19. Chen, Chuanhai & Li, Bowen & Guo, Jinyan & Liu, Zhifeng & Qi, Baobao & Hua, Chunlei, 2022. "Bearing life prediction method based on the improved FIDES reliability model," Reliability Engineering and System Safety, Elsevier, vol. 227(C).
    20. Li, Yuanfu & Chen, Yifan & Shao, Haonan & Zhang, Huisheng, 2023. "A novel dual attention mechanism combined with knowledge for remaining useful life prediction based on gated recurrent units," Reliability Engineering and System Safety, Elsevier, vol. 239(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:253:y:2025:i:c:s0951832024006513. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.