IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v252y2024ics0951832024005003.html
   My bibliography  Save this article

A core space gradient projection-based continual learning framework for remaining useful life prediction of machinery under variable operating conditions

Author

Listed:
  • Ren, Xiangyu
  • Qin, Yong
  • Li, Bin
  • Wang, Biao
  • Yi, Xiaojian
  • Jia, Limin

Abstract

Recently, continual learning has received particular attention in machinery remaining useful life (RUL) prediction, which enables prognostics networks to gradually improve performance without laborious retraining. Existing studies, however, have the following limitations: 1) The impacts of variable operating conditions are not explicitly considered during continual learning. 2) The continual learnability of prognostics network is limited by the lack of knowledge compression and de-redundancy. To overcome the abovementioned limitations, a novel continual learning framework is proposed for RUL prediction of machinery under variable operating conditions. First, a multi-kernel swarm convolution block is devised to automatically capture degradation features during continual learning without increasing computational consumption, which combines convolutional operations at various scales and focuses attention on appropriate scales based on operating condition information. Then, core space gradient projection is proposed for continual learning of prognostics networks, which mitigates forgetting by guiding gradient descent along the orthogonal direction of the previously input subspace. This approach also ensures the network learnability during continual learning by knowledge compression and de-redundancy to identify core space. The proposed framework is verified using accelerated degradation datasets of rolling element bearings with variable operating conditions. Experimental results show that the proposed framework is superior to some existing continual learning-based prognostics approaches for RUL prediction under variable operating conditions.

Suggested Citation

  • Ren, Xiangyu & Qin, Yong & Li, Bin & Wang, Biao & Yi, Xiaojian & Jia, Limin, 2024. "A core space gradient projection-based continual learning framework for remaining useful life prediction of machinery under variable operating conditions," Reliability Engineering and System Safety, Elsevier, vol. 252(C).
  • Handle: RePEc:eee:reensy:v:252:y:2024:i:c:s0951832024005003
    DOI: 10.1016/j.ress.2024.110428
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832024005003
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2024.110428?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:252:y:2024:i:c:s0951832024005003. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.