IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v253y2025ics0951832024005891.html
   My bibliography  Save this article

A comprehensive framework for estimating the remaining useful life of Li-ion batteries under limited data conditions with no temporal identifier

Author

Listed:
  • Lopez-Salazar, Camilo
  • Ekwaro-Osire, Stephen
  • Dabetwar, Shweta
  • Alemayehu, Fisseha

Abstract

The escalating applications of Lithium-ion (Li-ion) batteries in renewable energy and electric vehicles underscore the need for enhanced prognostics and health management systems to reduce the risk of sudden failures. Remaining useful life (RUL) determination is one of the most critical tasks in the field of battery prognostics nowadays. Even though statistical and machine learning (ML) methods have proven effective in research setups, many challenges prevent applying these prediction methods to real-life scenarios. These challenges include (1) scarcity of run-to-failure datasets with similar experimental conditions, (2) low data granularity when presented in capacity vs. discharge cycle pairs, and (3) lack of “temporal identifiers†in real-life scenarios. A temporal identifier is any label that provides knowledge about the current degradation state of a working battery. The research question developed for this study was, ‘Can the remaining useful life of a Li-ion battery having limited data without a temporal identifier be predicted?’ The specific aims were to estimate the temporal identifier of limited data and to predict the remaining useful life (RUL). An innovative framework incorporating reliability analysis and deep learning addresses these specific aims. Experimental data is used to test the framework's capabilities, limiting the training dataset to only three batteries and the testing dataset to a small sample (< 10 data points) of another battery. This new approach enabled the RUL prediction to achieve errors as low as ∼5 cycles and root mean square error of 6.24 cycles, outperforming other benchmark studies on Li-ion battery RUL prediction that use more battery degradation data without temporal identifier.

Suggested Citation

  • Lopez-Salazar, Camilo & Ekwaro-Osire, Stephen & Dabetwar, Shweta & Alemayehu, Fisseha, 2025. "A comprehensive framework for estimating the remaining useful life of Li-ion batteries under limited data conditions with no temporal identifier," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
  • Handle: RePEc:eee:reensy:v:253:y:2025:i:c:s0951832024005891
    DOI: 10.1016/j.ress.2024.110517
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832024005891
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2024.110517?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:253:y:2025:i:c:s0951832024005891. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.