IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v244y2024ics0951832024000012.html
   My bibliography  Save this article

RUL prediction for two-phase degrading systems considering physical damage observations

Author

Listed:
  • Cai, Xiao
  • Li, Naipeng
  • Xie, Min

Abstract

This paper focuses on a specific type of two-phase degrading system commonly encountered in industrial practice. The first phase is moderate with a low degradation rate while the second is rapid with a high rate. Current studies usually rely solely on sensor measurements to divide phases and predict the remaining useful life (RUL), ignoring the utilization of actual physical damage observations, such as wear depth and crack length. These observations, available during system shutdown periods, directly reflect system states and phase changes. To this end, we propose a novel RUL prediction framework consisting of offline training and online prediction processes. In the offline training process, the physical damage observations and sensor measurements are utilized to estimate the parameters of a two-phase Wiener process and a bijective function matrix. In the online prediction process, real-time sensor measurements are transformed into virtual damage observations for RUL prediction. To enhance the accuracy of phase change point detection, a change point detection algorithm is proposed for both processes. The effectiveness is demonstrated using a simulation and a real case study.

Suggested Citation

  • Cai, Xiao & Li, Naipeng & Xie, Min, 2024. "RUL prediction for two-phase degrading systems considering physical damage observations," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
  • Handle: RePEc:eee:reensy:v:244:y:2024:i:c:s0951832024000012
    DOI: 10.1016/j.ress.2024.109926
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832024000012
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2024.109926?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Zhen & Li, Yaping & Xia, Tangbin & Pan, Ershun, 2019. "Hidden Markov model with auto-correlated observations for remaining useful life prediction and optimal maintenance policy," Reliability Engineering and System Safety, Elsevier, vol. 184(C), pages 123-136.
    2. Hu, Changhua & Xing, Yuanxing & Du, Dangbo & Si, Xiaosheng & Zhang, Jianxun, 2023. "Remaining useful life estimation for two-phase nonlinear degradation processes," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    3. Le Son, Khanh & Fouladirad, Mitra & Barros, Anne & Levrat, Eric & Iung, Benoît, 2013. "Remaining useful life estimation based on stochastic deterioration models: A comparative study," Reliability Engineering and System Safety, Elsevier, vol. 112(C), pages 165-175.
    4. Wang, Han & Liao, Haitao & Ma, Xiaobing & Bao, Rui, 2021. "Remaining Useful Life Prediction and Optimal Maintenance Time Determination for a Single Unit Using Isotonic Regression and Gamma Process Model," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    5. Zhang, Zhengxin & Si, Xiaosheng & Hu, Changhua & Lei, Yaguo, 2018. "Degradation data analysis and remaining useful life estimation: A review on Wiener-process-based methods," European Journal of Operational Research, Elsevier, vol. 271(3), pages 775-796.
    6. Zhang, Jiusi & Jiang, Yuchen & Li, Xiang & Huo, Mingyi & Luo, Hao & Yin, Shen, 2022. "An adaptive remaining useful life prediction approach for single battery with unlabeled small sample data and parameter uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    7. Si, Xiao-Sheng & Wang, Wenbin & Hu, Chang-Hua & Zhou, Dong-Hua, 2011. "Remaining useful life estimation - A review on the statistical data driven approaches," European Journal of Operational Research, Elsevier, vol. 213(1), pages 1-14, August.
    8. Li, Naipeng & Gebraeel, Nagi & Lei, Yaguo & Fang, Xiaolei & Cai, Xiao & Yan, Tao, 2021. "Remaining useful life prediction based on a multi-sensor data fusion model," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    9. Si, Xiao-Sheng & Wang, Wenbin & Chen, Mao-Yin & Hu, Chang-Hua & Zhou, Dong-Hua, 2013. "A degradation path-dependent approach for remaining useful life estimation with an exact and closed-form solution," European Journal of Operational Research, Elsevier, vol. 226(1), pages 53-66.
    10. Fang, Xiaolei & Paynabar, Kamran & Gebraeel, Nagi, 2017. "Multistream sensor fusion-based prognostics model for systems with single failure modes," Reliability Engineering and System Safety, Elsevier, vol. 159(C), pages 322-331.
    11. Chen, Xiaowu & Liu, Zhen, 2022. "A long short-term memory neural network based Wiener process model for remaining useful life prediction," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    12. Chen, Zhen & Li, Yaping & Zhou, Di & Xia, Tangbin & Pan, Ershun, 2021. "Two-phase degradation data analysis with change-point detection based on Gaussian process degradation model," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    13. Ma, Jie & Cai, Li & Liao, Guobo & Yin, Hongpeng & Si, Xiaosheng & Zhang, Peng, 2023. "A multi-phase Wiener process-based degradation model with imperfect maintenance activities," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    14. Yu, Wennian & Tu, Wenbing & Kim, Il Yong & Mechefske, Chris, 2021. "A nonlinear-drift-driven Wiener process model for remaining useful life estimation considering three sources of variability," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    15. Kawee Numpacharoen & Amporn Atsawarungruangkit, 2012. "Generating Correlation Matrices Based on the Boundaries of Their Coefficients," PLOS ONE, Public Library of Science, vol. 7(11), pages 1-7, November.
    16. Bae, Suk Joo & Yuan, Tao & Ning, Shuluo & Kuo, Way, 2015. "A Bayesian approach to modeling two-phase degradation using change-point regression," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 66-74.
    17. Chen, Jinglong & Jing, Hongjie & Chang, Yuanhong & Liu, Qian, 2019. "Gated recurrent unit based recurrent neural network for remaining useful life prediction of nonlinear deterioration process," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 372-382.
    18. Xu, Xiaodong & Tang, Shengjin & Yu, Chuanqiang & Xie, Jian & Han, Xuebing & Ouyang, Minggao, 2021. "Remaining Useful Life Prediction of Lithium-ion Batteries Based on Wiener Process Under Time-Varying Temperature Condition," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    19. Ye, Zhi-Sheng & Chen, Nan & Shen, Yan, 2015. "A new class of Wiener process models for degradation analysis," Reliability Engineering and System Safety, Elsevier, vol. 139(C), pages 58-67.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lin, Wenyi & Chai, Yi & Fan, Linchuan & Zhang, Ke, 2024. "Remaining useful life prediction using nonlinear multi-phase Wiener process and variational Bayesian approach," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    2. Hu, Changhua & Xing, Yuanxing & Du, Dangbo & Si, Xiaosheng & Zhang, Jianxun, 2023. "Remaining useful life estimation for two-phase nonlinear degradation processes," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    3. Si, Xiao-Sheng & Li, Tianmei & Zhang, Jianxun & Lei, Yaguo, 2022. "Nonlinear degradation modeling and prognostics: A Box-Cox transformation perspective," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    4. Pang, Zhenan & Li, Tianmei & Pei, Hong & Si, Xiaosheng, 2023. "A condition-based prognostic approach for age- and state-dependent partially observable nonlinear degrading system," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    5. Yu, Wennian & Shao, Yimin & Xu, Jin & Mechefske, Chris, 2022. "An adaptive and generalized Wiener process model with a recursive filtering algorithm for remaining useful life estimation," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    6. Zhang, Shuyi & Zhai, Qingqing & Li, Yaqiu, 2023. "Degradation modeling and RUL prediction with Wiener process considering measurable and unobservable external impacts," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    7. Zhang, Jian-Xun & Si, Xiao-Sheng & Du, Dang-Bo & Hu, Chang-Hua & Hu, Chen, 2020. "A novel iterative approach of lifetime estimation for standby systems with deteriorating spare parts," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    8. Zhang, Zhengxin & Si, Xiaosheng & Hu, Changhua & Lei, Yaguo, 2018. "Degradation data analysis and remaining useful life estimation: A review on Wiener-process-based methods," European Journal of Operational Research, Elsevier, vol. 271(3), pages 775-796.
    9. Lin, Mingqiang & You, Yuqiang & Wang, Wei & Wu, Ji, 2023. "Battery health prognosis with gated recurrent unit neural networks and hidden Markov model considering uncertainty quantification," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    10. Wang, Yu & Liu, Qiufa & Lu, Wenjian & Peng, Yizhen, 2023. "A general time-varying Wiener process for degradation modeling and RUL estimation under three-source variability," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    11. Zhang, Ao & Wang, Zhihua & Bao, Rui & Liu, Chengrui & Wu, Qiong & Cao, Shihao, 2023. "A novel failure time estimation method for degradation analysis based on general nonlinear Wiener processes," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    12. Ta, Yuntian & Li, Yanfeng & Cai, Wenan & Zhang, Qianqian & Wang, Zhijian & Dong, Lei & Du, Wenhua, 2023. "Adaptive staged remaining useful life prediction method based on multi-sensor and multi-feature fusion," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    13. Pang, Zhenan & Si, Xiaosheng & Hu, Changhua & Du, Dangbo & Pei, Hong, 2021. "A Bayesian Inference for Remaining Useful Life Estimation by Fusing Accelerated Degradation Data and Condition Monitoring Data," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    14. Hachem, Hassan & Vu, Hai Canh & Fouladirad, Mitra, 2024. "Different methods for RUL prediction considering sensor degradation," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    15. Li, Naipeng & Wang, Mingyang & Lei, Yaguo & Si, Xiaosheng & Yang, Bin & Li, Xiang, 2024. "A nonparametric degradation modeling method for remaining useful life prediction with fragment data," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
    16. Zhang, Jian-Xun & Hu, Chang-Hua & He, Xiao & Si, Xiao-Sheng & Liu, Yang & Zhou, Dong-Hua, 2017. "Lifetime prognostics for deteriorating systems with time-varying random jumps," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 338-350.
    17. Li, Naipeng & Gebraeel, Nagi & Lei, Yaguo & Fang, Xiaolei & Cai, Xiao & Yan, Tao, 2021. "Remaining useful life prediction based on a multi-sensor data fusion model," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    18. Zhou, Shirong & Tang, Yincai & Xu, Ancha, 2021. "A generalized Wiener process with dependent degradation rate and volatility and time-varying mean-to-variance ratio," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    19. Xiaodong Xu & Chuanqiang Yu & Shengjin Tang & Xiaoyan Sun & Xiaosheng Si & Lifeng Wu, 2019. "Remaining Useful Life Prediction of Lithium-Ion Batteries Based on Wiener Processes with Considering the Relaxation Effect," Energies, MDPI, vol. 12(9), pages 1-17, May.
    20. Zhu, Ting & Chen, Zhen & Zhou, Di & Xia, Tangbin & Pan, Ershun, 2024. "Adaptive staged remaining useful life prediction of roller in a hot strip mill based on multi-scale LSTM with multi-head attention," Reliability Engineering and System Safety, Elsevier, vol. 248(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:244:y:2024:i:c:s0951832024000012. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.