IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v251y2024ics0951832024002916.html
   My bibliography  Save this article

Long-term temporal attention neural network with adaptive stage division for remaining useful life prediction of rolling bearings

Author

Listed:
  • Gao, Pengjie
  • Wang, Junliang
  • Shi, Ziqi
  • Ming, Weiwei
  • Chen, Ming

Abstract

Accurate rolling bearing remaining useful life (RUL) prediction, an effective assurance of the rotating machinery's safety and reliability, is one of the essential procedures in equipment maintenance. Current RUL prediction methods mostly adopt direct prediction methods, but it is difficult for them to guarantee prediction accuracy under the influence of longlife cycles and variable production environments. Therefore, a long-term temporal attention neural network with adaptive stage division (AD-LTAN) is proposed to predict the RUL of rolling bearings. Aiming at the large fluctuation range of the degradation starting point, an adaptive stage division model with the augmentation of early features is proposed to analyze the long-sequence signals, and then the life cycle of the bearings will be divided into different health stages. Aiming at the network memory decline under the longlife cycle of degradation, a long-term temporal attention neural network is designed to retain the long-term degradation characteristics of bearings by leveraging multilevel expansion convolution and integrating attention mechanisms to extract the fault signal features to realize the RUL prediction. The experimental results conducted on the PHM2012 and XJTU-SY datasets demonstrate that the proposed method outperforms the compared methods in terms of prediction loss (35.4 % less than their best).

Suggested Citation

  • Gao, Pengjie & Wang, Junliang & Shi, Ziqi & Ming, Weiwei & Chen, Ming, 2024. "Long-term temporal attention neural network with adaptive stage division for remaining useful life prediction of rolling bearings," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
  • Handle: RePEc:eee:reensy:v:251:y:2024:i:c:s0951832024002916
    DOI: 10.1016/j.ress.2024.110218
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832024002916
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2024.110218?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:251:y:2024:i:c:s0951832024002916. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.