IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v253y2025ics0951832024005854.html
   My bibliography  Save this article

A benchmark on uncertainty quantification for deep learning prognostics

Author

Listed:
  • Basora, Luis
  • Viens, Arthur
  • Chao, Manuel Arias
  • Olive, Xavier

Abstract

Reliable uncertainty quantification on RUL prediction is crucial for informative decision-making in predictive maintenance. In this context, we assess some of the latest developments in the field of uncertainty quantification for deep learning prognostics. This includes the state-of-the-art variational inference algorithms for Bayesian neural networks (BNN) as well as popular alternatives such as Monte Carlo Dropout (MCD), deep ensembles (DE), and heteroscedastic neural networks (HNN). All the inference techniques share the same inception architecture as functional model. The performance of the methods is evaluated on a subset of the large NASA N-CMAPSS dataset for aircraft engines. The assessment includes RUL prediction accuracy, the quality of predictive uncertainty, and the possibility of breaking down the total predictive uncertainty into its aleatoric and epistemic parts. Although all methods are close in terms of accuracy, we find differences in the way they estimate uncertainty. Thus, DE and MCD generally provide more conservative predictive uncertainty than BNN. Surprisingly, HNN achieve strong results without the added complexity of BNN. None of these methods exhibited strong robustness to out-of-distribution cases, with BNN and HNN methods particularly susceptible to low accuracy and overconfidence. BNN techniques presented anomalous miscalibration issues at the later stages of the system lifetime.

Suggested Citation

  • Basora, Luis & Viens, Arthur & Chao, Manuel Arias & Olive, Xavier, 2025. "A benchmark on uncertainty quantification for deep learning prognostics," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
  • Handle: RePEc:eee:reensy:v:253:y:2025:i:c:s0951832024005854
    DOI: 10.1016/j.ress.2024.110513
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832024005854
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2024.110513?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:253:y:2025:i:c:s0951832024005854. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.