IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v251y2024ics0951832024004721.html
   My bibliography  Save this article

A novel transformer-based few-shot learning method for intelligent fault diagnosis with noisy labels under varying working conditions

Author

Listed:
  • Wang, Haoyu
  • Li, Chuanjiang
  • Ding, Peng
  • Li, Shaobo
  • Li, Tandong
  • Liu, Chenyu
  • Zhang, Xiangjie
  • Hong, Zejian

Abstract

Recent years have witnessed the success of Few-shot Learning (FSL) methods in equipment reliability enhancement and fault diagnosis, by virtue of learning from limited data and adapting to new operating conditions. However, due to sensor bias, manual collection, and mislabeling, label noise is inevitably introduced into the dataset, which further reduces the quality of supervised information contained in the few-shot dataset, posing significant challenges for accurate fault diagnosis. In this paper, the problem of Few-shot Fault Diagnosis with Noisy Labels (FFDNL) is studied for the first time, and a novel method named Enhanced Transformer with Asymmetric Loss Function (ETALF) is proposed. ETALF leverages the self-attention mechanism of the transformer to dynamically measure the similarity between fault samples in the support set to enhance the model's robustness against label noise, then naturally aggregates the similar samples into corresponding correct prototypes. Furthermore, an asymmetric loss function is designed, which adaptively assigns the model with larger penalties for incorrect category predictions and smaller penalties for correct category predictions, thereby enhancing fault diagnostic performance through inherent asymmetry. Comprehensive experiments are conducted on two benchmark datasets, and the compared results with representative approaches validate the effectiveness of our proposed ETALF in performing intelligent fault diagnosis using limited and noise-labeled data under varying working conditions, which achieves accuracies of 97.77% and 95.78% with 0.2 noisy-level labels during meta-training and meta-testing on the CWRU and KAIST datasets, respectively.

Suggested Citation

  • Wang, Haoyu & Li, Chuanjiang & Ding, Peng & Li, Shaobo & Li, Tandong & Liu, Chenyu & Zhang, Xiangjie & Hong, Zejian, 2024. "A novel transformer-based few-shot learning method for intelligent fault diagnosis with noisy labels under varying working conditions," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
  • Handle: RePEc:eee:reensy:v:251:y:2024:i:c:s0951832024004721
    DOI: 10.1016/j.ress.2024.110400
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832024004721
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2024.110400?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ma, Yulin & Li, Lei & Yang, Jun, 2022. "Convolutional kernel aggregated domain adaptation for intelligent fault diagnosis with label noise," Reliability Engineering and System Safety, Elsevier, vol. 227(C).
    2. Deng, Congying & Deng, Zihao & Miao, Jianguo, 2024. "Semi-supervised ensemble fault diagnosis method based on adversarial decoupled auto-encoder with extremely limited labels," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    3. Chen, Jiayu. & Lin, Cuiyin & Yao, Boqing & Yang, Lechang & Ge, Hongjuan, 2023. "Intelligent fault diagnosis of rolling bearings with low-quality data: A feature significance and diversity learning method," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    4. Tian, Jilun & Jiang, Yuchen & Zhang, Jiusi & Luo, Hao & Yin, Shen, 2024. "A novel data augmentation approach to fault diagnosis with class-imbalance problem," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    5. Chen, Xu & Zhao, Chunhui & Ding, Jinliang, 2023. "Pyramid-type zero-shot learning model with multi-granularity hierarchical attributes for industrial fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 240(C).
    6. Meng, Huixing & Geng, Mengyao & Han, Te, 2023. "Long short-term memory network with Bayesian optimization for health prognostics of lithium-ion batteries based on partial incremental capacity analysis," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    7. Cheng, Yongbo & Qv, Junheng & Feng, Ke & Han, Te, 2024. "A Bayesian adversarial probsparse Transformer model for long-term remaining useful life prediction," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    8. Huang, Keke & Tao, Shijun & Wu, Dehao & Yang, Chunhua & Gui, Weihua, 2024. "Robust condition identification against label noise in industrial processes based on trusted connection dictionary learning," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
    9. Ding, Yifei & Jia, Minping & Zhuang, Jichao & Cao, Yudong & Zhao, Xiaoli & Lee, Chi-Guhn, 2023. "Deep imbalanced domain adaptation for transfer learning fault diagnosis of bearings under multiple working conditions," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Ruonan & Zhang, Quanhu & Lin, Di & Zhang, Weidong & Ding, Steven X., 2024. "Causal intervention graph neural network for fault diagnosis of complex industrial processes," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    2. Li, Ying & Zhang, Lijie & Liang, Pengfei & Wang, Xiangfeng & Wang, Bin & Xu, Leitao, 2024. "Semi-supervised meta-path space extended graph convolution network for intelligent fault diagnosis of rotating machinery under time-varying speeds," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    3. Wu, Zhangjun & Xu, Renli & Luo, Yuansheng & Shao, Haidong, 2024. "A holistic semi-supervised method for imbalanced fault diagnosis of rotational machinery with out-of-distribution samples," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
    4. Fu, Xingchen & Jiao, Keming & Tao, Jianfeng & Liu, Chengliang, 2024. "Multi-stream domain adversarial prototype network for integrated smart roller TBM main bearing fault diagnosis across various low rotating speeds," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
    5. Miao, Mengqi & Wang, Yun & Yu, Jianbo, 2024. "Temporal self-supervised domain adaptation network for machinery fault diagnosis under multiple non-ideal conditions," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    6. Liang, Pengfei & Tian, Jiaye & Wang, Suiyan & Yuan, Xiaoming, 2024. "Multi-source information joint transfer diagnosis for rolling bearing with unknown faults via wavelet transform and an improved domain adaptation network," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    7. Wang, Huan & Li, Yan-Fu & Zhang, Ying, 2023. "Bioinspired spiking spatiotemporal attention framework for lithium-ion batteries state-of-health estimation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    8. Zhang, Jianping & Zhang, Yinjie & Fu, Jian & Zhao, Dawen & Liu, Ping & Zhang, Zhiwei, 2024. "Capacity fading knee-point recognition method and life prediction for lithium-ion batteries using segmented capacity degradation model," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    9. Yu, Tian & Li, Chaoshun & Huang, Jie & Xiao, Xiangqu & Zhang, Xiaoyuan & Li, Yuhong & Fu, Bitao, 2024. "ReF-DDPM: A novel DDPM-based data augmentation method for imbalanced rolling bearing fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    10. Wu, Jiawei & Wan, Liangqi, 2024. "Reliability sensitivity analysis for RBSMC: A high-efficiency multiple response Gaussian process model," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    11. Liu, Jiale & Wang, Huan, 2024. "A brain-inspired energy-efficient Wide Spiking Residual Attention Framework for intelligent fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    12. Yu, Aobo & Cai, Bolin & Wu, Qiujie & García, Miguel Martínez & Li, Jing & Chen, Xiangcheng, 2024. "Source-free domain adaptation method for fault diagnosis of rotation machinery under partial information," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    13. Zhang, Qing & Tang, Lv & Xuan, Jianping & Shi, Tielin & Li, Rui, 2023. "An uncertainty relevance metric-based domain adaptation fault diagnosis method to overcome class relevance caused confusion," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    14. Li, Sai & Peng, Yanfeng & Shen, Yiping & Zhao, Sibo & Shao, Haidong & Bin, Guangfu & Guo, Yong & Yang, Xingkai & Fan, Chao, 2024. "Rolling Bearing Fault Diagnosis Under Data Imbalance and Variable Speed Based on Adaptive Clustering Weighted Oversampling," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    15. Zhan, Yuling & Kong, Ziqian & Wang, Ziqi & Jin, Xiaohang & Xu, Zhengguo, 2024. "Remaining useful life prediction with uncertainty quantification based on multi-distribution fusion structure," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    16. Yin, Xiuxian & He, Wei & Cao, You & Ma, Ning & Zhou, Guohui & Li, Hongyu, 2024. "A new health state assessment method based on interpretable belief rule base with bimetric balance," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    17. Zhao, Hongqian & Chen, Zheng & Shu, Xing & Xiao, Renxin & Shen, Jiangwei & Liu, Yu & Liu, Yonggang, 2024. "Online surface temperature prediction and abnormal diagnosis of lithium-ion batteries based on hybrid neural network and fault threshold optimization," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    18. Kim, Yong Chae & Lee, Jinwook & Kim, Taehun & Baek, Jonghwa & Ko, Jin Uk & Jung, Joon Ha & Youn, Byeng D., 2024. "Gradient Alignment based Partial Domain Adaptation (GAPDA) using a domain knowledge filter for fault diagnosis of bearing," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
    19. Chaleshtori, Amir Eshaghi & Aghaie, Abdollah, 2024. "A novel bearing fault diagnosis approach using the Gaussian mixture model and the weighted principal component analysis," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    20. Guo, Yongfang & Yu, Xiangyuan & Wang, Yashuang & Huang, Kai, 2024. "Health prognostics of lithium-ion batteries based on universal voltage range features mining and adaptive multi-Gaussian process regression with Harris Hawks optimization algorithm," Reliability Engineering and System Safety, Elsevier, vol. 244(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:251:y:2024:i:c:s0951832024004721. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.