IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v252y2024ics095183202400526x.html
   My bibliography  Save this article

DPICEN: Deep physical information consistency embedded network for bearing fault diagnosis under unknown domain

Author

Listed:
  • Lu, Feiyu
  • Tong, Qingbin
  • Jiang, Xuedong
  • Feng, Ziwei
  • Liu, Ruifang
  • Xu, Jianjun
  • Huo, Jingyi

Abstract

In recent years, intelligent transfer models have focused on narrowing the gap between the source domain and target domain data to improve diagnostic effectiveness. However, collecting unlabelled target domain data in advance is challenging, leading to suboptimal performance of domain adaptation models for unknown target domain data. To address this issue, this paper proposes a deep physical information consistency embedded network (DPICEN) for tackling unknown domain bearing fault diagnosis problems. First, a physical information encoder (PIE) is constructed to encode physical information into tensors with values of 0/1. Second, fault samples and their encoded tensors are embedded into a physically consistent space, and the mean squared error (MSE) is employed to reduce the distance between data feature embeddings and physical information embeddings. Subsequently, to further constrain the distribution differences of unknown domain data, a plug-and-play multiple sparse regularization (MSR) algorithm is proposed. Finally, the embedded features are input into a classifier with MSR to achieve bearing fault diagnosis. The results demonstrate the effectiveness and advancement of DPICEN in comparison with 16 related methods in 13 unknown domain fault diagnosis tasks in three bearing datasets. The code can be found at https://github.com/John-520/Models-for-DPICEN.

Suggested Citation

  • Lu, Feiyu & Tong, Qingbin & Jiang, Xuedong & Feng, Ziwei & Liu, Ruifang & Xu, Jianjun & Huo, Jingyi, 2024. "DPICEN: Deep physical information consistency embedded network for bearing fault diagnosis under unknown domain," Reliability Engineering and System Safety, Elsevier, vol. 252(C).
  • Handle: RePEc:eee:reensy:v:252:y:2024:i:c:s095183202400526x
    DOI: 10.1016/j.ress.2024.110454
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S095183202400526X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2024.110454?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:252:y:2024:i:c:s095183202400526x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.