Physics-driven feature alignment combined with dynamic distribution adaptation for three-cylinder drilling pump cross-speed fault diagnosis
Author
Abstract
Suggested Citation
DOI: 10.1016/j.ress.2024.110369
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Tang, Shengnan & Zhu, Yong & Yuan, Shouqi, 2022. "Intelligent fault identification of hydraulic pump using deep adaptive normalized CNN and synchrosqueezed wavelet transform," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
- Zhou, Taotao & Han, Te & Droguett, Enrique Lopez, 2022. "Towards trustworthy machine fault diagnosis: A probabilistic Bayesian deep learning framework," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
- Angel Mathew, 2024. "Quantile cumulative distribution function and its applications," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 53(11), pages 4194-4206, June.
- Shi, Mingkuan & Ding, Chuancang & Wang, Rui & Shen, Changqing & Huang, Weiguo & Zhu, Zhongkui, 2023. "Graph embedding deep broad learning system for data imbalance fault diagnosis of rotating machinery," Reliability Engineering and System Safety, Elsevier, vol. 240(C).
- Wang, Jinrui & Zhang, Zongzhen & Liu, Zhiliang & Han, Baokun & Bao, Huaiqian & Ji, Shanshan, 2023. "Digital twin aided adversarial transfer learning method for domain adaptation fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
- Li, Gang & Hu, Jiayao & Ding, Yaping & Tang, Aimin & Ao, Jiaxing & Hu, Dalong & Liu, Yang, 2024. "A novel method for fault diagnosis of fluid end of drilling pump under complex working conditions," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
- Xia, Jingyan & Huang, Ruyi & Chen, Zhuyun & He, Guolin & Li, Weihua, 2023. "A novel digital twin-driven approach based on physical-virtual data fusion for gearbox fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 240(C).
- Rivas, Andy & Delipei, Gregory Kyriakos & Davis, Ian & Bhongale, Satyan & Yang, Jinan & Hou, Jason, 2024. "A component diagnostic and prognostic framework for pump bearings based on deep learning with data augmentation," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
- Wang, Fu & Xiahou, Tangfan & Zhang, Xian & He, Pan & Yang, Taibo & Niu, Jiang & Liu, Caixue & Liu, Yu, 2024. "Convolutional preprocessing Transformer-based fault diagnosis for rectifier-filter circuits in nuclear power plants," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zhang, Guowei & Kong, Xianguang & Wang, Qibin & Du, Jingli & Wang, Jinrui & Ma, Hongbo, 2024. "Single domain generalization method based on anti-causal learning for rotating machinery fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
- Liu, Jiale & Wang, Huan, 2024. "A brain-inspired energy-efficient Wide Spiking Residual Attention Framework for intelligent fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
- Wang, Jian & Gao, Shibin & Yu, Long & Liu, Xingyang & Neri, Ferrante & Zhang, Dongkai & Kou, Lei, 2024. "Uncertainty-aware trustworthy weather-driven failure risk predictor for overhead contact lines," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
- Yuan, Zixia & Xiong, Guojiang & Fu, Xiaofan & Mohamed, Ali Wagdy, 2023. "Improving fault tolerance in diagnosing power system failures with optimal hierarchical extreme learning machine," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
- Dong, Yutong & Jiang, Hongkai & Wu, Zhenghong & Yang, Qiao & Liu, Yunpeng, 2023. "Digital twin-assisted multiscale residual-self-attention feature fusion network for hypersonic flight vehicle fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
- Chen, Edward & Bao, Han & Dinh, Nam, 2024. "Evaluating the reliability of machine-learning-based predictions used in nuclear power plant instrumentation and control systems," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
- Zhu, Zuanyu & Cheng, Junsheng & Wang, Ping & Wang, Jian & Kang, Xin & Yang, Yu, 2023. "A novel fault diagnosis framework for rotating machinery with hierarchical multiscale symbolic diversity entropy and robust twin hyperdisk-based tensor machine," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
- Zhang, Zhongwei & Jiao, Zonghao & Li, Youjia & Shao, Mingyu & Dai, Xiangjun, 2024. "Intelligent fault diagnosis of bearings driven by double-level data fusion based on multichannel sample fusion and feature fusion under time-varying speed conditions," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
- Grzegorz Filo, 2023. "Artificial Intelligence Methods in Hydraulic System Design," Energies, MDPI, vol. 16(8), pages 1-19, April.
- Guo, Junyu & Yang, Yulai & Li, He & Wang, Jiang & Tang, Aimin & Shan, Daiwei & Huang, Bangkui, 2024. "A hybrid deep learning model towards fault diagnosis of drilling pump," Applied Energy, Elsevier, vol. 372(C).
- Yu, Aobo & Cai, Bolin & Wu, Qiujie & GarcÃa, Miguel MartÃnez & Li, Jing & Chen, Xiangcheng, 2024. "Source-free domain adaptation method for fault diagnosis of rotation machinery under partial information," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
- Yang, Miaorui & Zhang, Kun & Sheng, Zhipeng & Zhang, Xiangfeng & Xu, Yonggang, 2024. "The amplitude modulation bispectrum: A weak modulation features extracting method for bearing fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
- Deng, Congying & Deng, Zihao & Miao, Jianguo, 2024. "Semi-supervised ensemble fault diagnosis method based on adversarial decoupled auto-encoder with extremely limited labels," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
- Zhao, Chao & Shen, Weiming, 2022. "Adaptive open set domain generalization network: Learning to diagnose unknown faults under unknown working conditions," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
- Zhang, Wei & Wang, Ziwei & Li, Xiang, 2023. "Blockchain-based decentralized federated transfer learning methodology for collaborative machinery fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
- Li, Ying & Zhang, Lijie & Liang, Pengfei & Wang, Xiangfeng & Wang, Bin & Xu, Leitao, 2024. "Semi-supervised meta-path space extended graph convolution network for intelligent fault diagnosis of rotating machinery under time-varying speeds," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
- Zheng, Xiaorong & Nie, Jiahao & He, Zhiwei & Li, Ping & Dong, Zhekang & Gao, Mingyu, 2024. "A fine-grained feature decoupling based multi-source domain adaptation network for rotating machinery fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
- Hu, Kui & He, Qingbo & Cheng, Changming & Peng, Zhike, 2024. "Adaptive incremental diagnosis model for intelligent fault diagnosis with dynamic weight correction," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
- Rombach, Katharina & Michau, Gabriel & Fink, Olga, 2023. "Controlled generation of unseen faults for Partial and Open-Partial domain adaptation," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
- Feng, Tingting & Li, Shichao & Guo, Liang & Gao, Hongli & Chen, Tao & Yu, Yaoxiang, 2023. "A degradation-shock dependent competing failure processes based method for remaining useful life prediction of drill bit considering time-shifting sudden failure threshold," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
More about this item
Keywords
Drilling pump; Physics-driven feature alignment; Transfer learning; Dynamic distribution adaptation; Fault diagnosis;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:251:y:2024:i:c:s0951832024004411. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.