IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v253y2025ics0951832024006355.html
   My bibliography  Save this article

SRSGCN: A novel multi-sensor fault diagnosis method for hydraulic axial piston pump with limited data

Author

Listed:
  • Liang, Pengfei
  • Wang, Xiangfeng
  • Ai, Chao
  • Hou, Dongming
  • Liu, Siyuan

Abstract

Deep learning has immense potential in ensuring the safe operation of hydraulic axial piston pumps (HAPP). However, the complex operating environment and high cost of labeling have resulted in a scarcity of labeled fault samples. This paper proposes a novel method called Siamese Random Spatiotemporal Graph Convolutional Network (SRSGCN). Firstly, based on graph convolutional networks, a Random Spatiotemporal Graph (RSG) is designed to aggregate multi-sensor information at different time stamps, fully exploiting the spatiotemporal features of the original data. Secondly, the Siamese Neural Network (SNN) is improved by retaining the twin subnetwork structure and removing the similarity output part. While preserving feature extraction capabilities, it is endowed with classification ability. Based on its strong feature mining capability, SRSGCN can fully utilize the scarce sample information to improve diagnostic accuracy. Finally, a case study was conducted on our HAPP experimental platform. The experiments show that compared with other existing methods, this method has higher diagnostic accuracy and can effectively solve the problem of HAPP fault diagnosis under limited data conditions.

Suggested Citation

  • Liang, Pengfei & Wang, Xiangfeng & Ai, Chao & Hou, Dongming & Liu, Siyuan, 2025. "SRSGCN: A novel multi-sensor fault diagnosis method for hydraulic axial piston pump with limited data," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
  • Handle: RePEc:eee:reensy:v:253:y:2025:i:c:s0951832024006355
    DOI: 10.1016/j.ress.2024.110563
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832024006355
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2024.110563?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:253:y:2025:i:c:s0951832024006355. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.