IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v252y2024ics0951832024005015.html
   My bibliography  Save this article

A relationship-aware calibrated prototypical network for fault incremental diagnosis of electric motors without reserved samples

Author

Listed:
  • Yue, Ke
  • Li, Jipu
  • Deng, Shuhan
  • Kwoh, Chee Keong
  • Chen, Zhuyun
  • Li, Weihua

Abstract

Recently, incremental learning (IL) has been widely used in intelligent fault diagnosis of electronic machinery. Most of the typical IL methods have adopted the exemplar-replay strategy to retain the learned diagnostic knowledge. However, it is almost impossible to have infinite storage space to retain fault samples in practical industrial scenarios, which brings a significant challenge for actual industrial applications. To solve this issue, a novel Relationship-Aware Calibrated Prototypical Network (RACPN) is proposed for incremental fault diagnosis of electric motors, which retains learned diagnostic knowledge without requiring the storage of any fault samples from previous sessions. Firstly, a fault prototype calibration (FPC) method is employed to learn new diagnostic knowledge from new sessions. Secondly, a task-relationship representation (TRR), which stands for a method to represent the relationships between tasks, is utilized to enhance the maintenance of diagnostic knowledge across different sessions. Finally, a Gaussian Bayes classifier with Mahalanobis metric is adopted to enhance the inference reliability for classifying fault categories. Experiments conducted on two electrical motor datasets demonstrate the superiority and effectiveness of the proposed RACPN. The results validate that current signals as model input can achieve satisfactory diagnostic performance. The proposed RACPN is a promising tool for incremental fault diagnosis in electric motors.

Suggested Citation

  • Yue, Ke & Li, Jipu & Deng, Shuhan & Kwoh, Chee Keong & Chen, Zhuyun & Li, Weihua, 2024. "A relationship-aware calibrated prototypical network for fault incremental diagnosis of electric motors without reserved samples," Reliability Engineering and System Safety, Elsevier, vol. 252(C).
  • Handle: RePEc:eee:reensy:v:252:y:2024:i:c:s0951832024005015
    DOI: 10.1016/j.ress.2024.110429
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832024005015
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2024.110429?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:252:y:2024:i:c:s0951832024005015. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.