Multi-task learning mixture density network for interval estimation of the remaining useful life of rolling element bearings
Author
Abstract
Suggested Citation
DOI: 10.1016/j.ress.2024.110348
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Liu, Jie & Hou, Bingchang & Lu, Ming & Wang, Dong, 2024. "Box-Cox transformation based state-space modeling as a unified prognostic framework for degradation linearization and RUL prediction enhancement," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
- Li, Guofa & Wei, Jingfeng & He, Jialong & Yang, Haiji & Meng, Fanning, 2023. "Implicit Kalman filtering method for remaining useful life prediction of rolling bearing with adaptive detection of degradation stage transition point," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
- Zhang, Huixin & Xi, Xiaopeng & Pan, Rong, 2023. "A two-stage data-driven approach to remaining useful life prediction via long short-term memory networks," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
- Bai, Rui & Noman, Khandaker & Feng, Ke & Peng, Zhike & Li, Yongbo, 2023. "A two-phase-based deep neural network for simultaneous health monitoring and prediction of rolling bearings," Reliability Engineering and System Safety, Elsevier, vol. 238(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Gao, Pengjie & Wang, Junliang & Shi, Ziqi & Ming, Weiwei & Chen, Ming, 2024. "Long-term temporal attention neural network with adaptive stage division for remaining useful life prediction of rolling bearings," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
- Lian, Zheng & Zhou, Zhi-Jie & Hu, Chang-Hua & Wang, Jie & Zhang, Chun-Chao & Zhang, Chao-Li, 2024. "A health assessment method with attribute importance modeling for complex systems using belief rule base," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
- Zhu, Ting & Chen, Zhen & Zhou, Di & Xia, Tangbin & Pan, Ershun, 2024. "Adaptive staged remaining useful life prediction of roller in a hot strip mill based on multi-scale LSTM with multi-head attention," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
- Zhang, Jian-Xun & Zhang, Jia-Ling & Zhang, Zheng-Xin & Li, Tian-Mei & Si, Xiao-Sheng, 2024. "Remaining useful life prediction for stochastic degrading devices incorporating quantization," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
- Kim, Sunghyun & Seo, Yun-Ho & Park, Junhong, 2024. "Transformer-based novel framework for remaining useful life prediction of lubricant in operational rolling bearings," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
- Lin, Wenyi & Chai, Yi & Fan, Linchuan & Zhang, Ke, 2024. "Remaining useful life prediction using nonlinear multi-phase Wiener process and variational Bayesian approach," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
- Xu, Xiaobin & Zhou, Jiahao & Weng, Xu & Zhang, Zehui & He, Hong & Steyskal, Felix & Brunauer, Georg, 2024. "A novel evidence reasoning-based RUL prediction method integrating uncertainty information," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
- Wu, Jinxin & He, Deqiang & Li, Jiayi & Miao, Jian & Li, Xianwang & Li, Hongwei & Shan, Sheng, 2024. "Temporal multi-resolution hypergraph attention network for remaining useful life prediction of rolling bearings," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
- Li, Yajing & Wang, Zhijian & Li, Feng & Li, Yanfeng & Zhang, Xiaohong & Shi, Hui & Dong, Lei & Ren, Weibo, 2024. "An ensembled remaining useful life prediction method with data fusion and stage division," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
- Pang, Zhendong & Luan, Yingxin & Chen, Jiahong & Li, Teng, 2024. "ParInfoGPT: An LLM-based two-stage framework for reliability assessment of rotating machine under partial information," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
- Xie, Bin & Wang, Yanzhong & Zhu, Yunyi & Liu, Peng & Wu, Yu & Lu, Fengxia, 2024. "Time-variant reliability analysis of angular contact ball bearing considering the coupled effect of rolling contact fatigue damage and wear," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
- Yang, Jing & Wang, Xiaomin, 2024. "Meta-learning with deep flow kernel network for few shot cross-domain remaining useful life prediction," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
- Wang, Chenyushu & Cai, Baoping & Shao, Xiaoyan & Zhao, Liqian & Sui, Zhongfei & Liu, Keyang & Khan, Javed Akbar & Gao, Lei, 2023. "Dynamic risk assessment methodology of operation process for deepwater oil and gas equipment," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
- Ma, Chenyang & Wang, Xianzhi & Li, Yongbo & Cai, Zhiqiang, 2024. "Broad zero-shot diagnosis for rotating machinery with untrained compound faults," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
- Liang, Tao & Wang, Fuli & Wang, Shu & Li, Kang & Mo, Xuelei & Lu, Di, 2024. "Machinery health prognostic with uncertainty for mineral processing using TSC-TimeGAN," Reliability Engineering and System Safety, Elsevier, vol. 246(C).
- Dinh, Duc-Hanh & Do, Phuc & Hoang, Van-Thanh & Vo, Nhu-Thanh & Bang, Tao Quang, 2024. "A predictive maintenance policy for manufacturing systems considering degradation of health monitoring device," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
- Zhou, Zhihao & Zhang, Wei & Yao, Peng & Long, Zhenhua & Bai, Mingling & Liu, Jinfu & Yu, Daren, 2024. "More realistic degradation trend prediction for gas turbine based on factor analysis and multiple penalty mechanism loss function," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
More about this item
Keywords
Multi-task learning; Mixture density network; Uncertainty assessment; Remaining useful life; Rolling element bearing;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:251:y:2024:i:c:s0951832024004204. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.