IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v251y2024ics0951832024004496.html
   My bibliography  Save this article

Transformer-based novel framework for remaining useful life prediction of lubricant in operational rolling bearings

Author

Listed:
  • Kim, Sunghyun
  • Seo, Yun-Ho
  • Park, Junhong

Abstract

Accurate prediction of the remaining useful life (RUL) of lubricants in rolling bearings is crucial for maintaining efficient operation of rotating machinery and ensuring timely lubricant replacement. We propose a comprehensive framework that integrates the temporal variation transfer function (TVTF), harmonic-sideband Matrix, and the harmonic frequency transformer (HarFT), a transformer-based model. This approach effectively utilizes vibration characteristics to enhance the accuracy of lubricant degradation prediction in rolling bearings. Validation with rolling bearings experiencing lubrication failure confirms that our framework significantly outperforms alternative methods in RUL prediction. The proposed framework excels in extracting and analyzing harmonic components from vibration responses, enabling detection of minute status variations due to lubricant degradation. By applying explainable artificial intelligence (XAI), it is possible to ascertain the rationale behind the RUL predicted by the HarFT model, facilitating evidence-based decisions. Our research provides a novel strategy for lubricant RUL assessment in rolling bearings, thereby improving reliability and maintenance efficiency in industrial applications.

Suggested Citation

  • Kim, Sunghyun & Seo, Yun-Ho & Park, Junhong, 2024. "Transformer-based novel framework for remaining useful life prediction of lubricant in operational rolling bearings," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
  • Handle: RePEc:eee:reensy:v:251:y:2024:i:c:s0951832024004496
    DOI: 10.1016/j.ress.2024.110377
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832024004496
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2024.110377?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kumar, Anil & Kumar, Rajesh & Tang, Hesheng & Xiang, Jiawei, 2024. "A comprehensive study on developing an intelligent framework for identification and quantitative evaluation of the bearing defect size," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    2. Miao, Mengqi & Yu, Jianbo & Zhao, Zhihong, 2022. "A sparse domain adaption network for remaining useful life prediction of rolling bearings under different working conditions," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    3. Ahmad, Wasim & Khan, Sheraz Ali & Islam, M M Manjurul & Kim, Jong-Myon, 2019. "A reliable technique for remaining useful life estimation of rolling element bearings using dynamic regression models," Reliability Engineering and System Safety, Elsevier, vol. 184(C), pages 67-76.
    4. Li, Guofa & Wei, Jingfeng & He, Jialong & Yang, Haiji & Meng, Fanning, 2023. "Implicit Kalman filtering method for remaining useful life prediction of rolling bearing with adaptive detection of degradation stage transition point," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    5. Li, Xiang & Zhang, Wei & Ding, Qian, 2019. "Deep learning-based remaining useful life estimation of bearings using multi-scale feature extraction," Reliability Engineering and System Safety, Elsevier, vol. 182(C), pages 208-218.
    6. Wan, Shaoke & Li, Xiaohu & Zhang, Yanfei & Liu, Shijie & Hong, Jun & Wang, Dongfeng, 2022. "Bearing remaining useful life prediction with convolutional long short-term memory fusion networks," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    7. Ni, Qing & Ji, J.C. & Feng, Ke & Zhang, Yongchao & Lin, Dongdong & Zheng, Jinde, 2024. "Data-driven bearing health management using a novel multi-scale fused feature and gated recurrent unit," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    8. Li, Jimeng & Mao, Weilin & Yang, Bixin & Meng, Zong & Tong, Kai & Yu, Shancheng, 2024. "RUL prediction of rolling bearings across working conditions based on multi-scale convolutional parallel memory domain adaptation network," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    9. Su, Yunsheng & Shi, Luojie & Zhou, Kai & Bai, Guangxing & Wang, Zequn, 2024. "Knowledge-informed deep networks for robust fault diagnosis of rolling bearings," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    10. Chang, Yuanhong & Li, Fudong & Chen, Jinglong & Liu, Yulang & Li, Zipeng, 2022. "Efficient temporal flow Transformer accompanied with multi-head probsparse self-attention mechanism for remaining useful life prognostics," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gao, Pengjie & Wang, Junliang & Shi, Ziqi & Ming, Weiwei & Chen, Ming, 2024. "Long-term temporal attention neural network with adaptive stage division for remaining useful life prediction of rolling bearings," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    2. Wei, Yupeng & Wu, Dazhong & Terpenny, Janis, 2024. "Remaining useful life prediction using graph convolutional attention networks with temporal convolution-aware nested residual connections," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    3. Cheng, Han & Kong, Xianguang & Wang, Qibin & Ma, Hongbo & Yang, Shengkang, 2022. "The two-stage RUL prediction across operation conditions using deep transfer learning and insufficient degradation data," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    4. Xu, Yuhui & Xia, Tangbin & Jiang, Yimin & Wang, Yu & Wang, Dong & Pan, Ershun & Xi, Lifeng, 2024. "A temporal partial domain adaptation network for transferable prognostics across working conditions with insufficient data," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
    5. Cao, Lixiao & Zhang, Hongyu & Meng, Zong & Wang, Xueping, 2023. "A parallel GRU with dual-stage attention mechanism model integrating uncertainty quantification for probabilistic RUL prediction of wind turbine bearings," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    6. Wu, Jinxin & He, Deqiang & Li, Jiayi & Miao, Jian & Li, Xianwang & Li, Hongwei & Shan, Sheng, 2024. "Temporal multi-resolution hypergraph attention network for remaining useful life prediction of rolling bearings," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
    7. Yang, Jing & Wang, Xiaomin, 2024. "Meta-learning with deep flow kernel network for few shot cross-domain remaining useful life prediction," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    8. Zio, Enrico, 2022. "Prognostics and Health Management (PHM): Where are we and where do we (need to) go in theory and practice," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    9. Lin, Yan-Hui & Chang, Liang & Guan, Lu-Xin, 2024. "Enhanced stochastic recurrent hybrid model for RUL Predictions via Semi-supervised learning," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    10. Chen, Chuanhai & Li, Bowen & Guo, Jinyan & Liu, Zhifeng & Qi, Baobao & Hua, Chunlei, 2022. "Bearing life prediction method based on the improved FIDES reliability model," Reliability Engineering and System Safety, Elsevier, vol. 227(C).
    11. Li, Yuanfu & Chen, Yao & Hu, Zhenchao & Zhang, Huisheng, 2023. "Remaining useful life prediction of aero-engine enabled by fusing knowledge and deep learning models," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    12. Yu, Tian & Li, Chaoshun & Huang, Jie & Xiao, Xiangqu & Zhang, Xiaoyuan & Li, Yuhong & Fu, Bitao, 2024. "ReF-DDPM: A novel DDPM-based data augmentation method for imbalanced rolling bearing fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    13. Yan, Jianhai & Ye, Zhi-Sheng & He, Shuguang & He, Zhen, 2024. "A feature disentanglement and unsupervised domain adaptation of remaining useful life prediction for sensor-equipped machines," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    14. Zhang, Jiusi & Li, Xiang & Tian, Jilun & Luo, Hao & Yin, Shen, 2023. "An integrated multi-head dual sparse self-attention network for remaining useful life prediction," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    15. Yi Lyu & Qichen Zhang & Zhenfei Wen & Aiguo Chen, 2022. "Remaining Useful Life Prediction Based on Multi-Representation Domain Adaptation," Mathematics, MDPI, vol. 10(24), pages 1-18, December.
    16. Zhang, Mingyuan & He, Chen & Huang, Chengxuan & Yang, Jianhong, 2024. "A weighted time embedding transformer network for remaining useful life prediction of rolling bearing," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    17. Shujie Yang & Peikun Yang & Hao Yu & Jing Bai & Wuwei Feng & Yuxiang Su & Yulin Si, 2022. "A 2DCNN-RF Model for Offshore Wind Turbine High-Speed Bearing-Fault Diagnosis under Noisy Environment," Energies, MDPI, vol. 15(9), pages 1-16, May.
    18. Wu, Jingyao & Zhao, Zhibin & Sun, Chuang & Yan, Ruqiang & Chen, Xuefeng, 2021. "Learning from Class-imbalanced Data with a Model-Agnostic Framework for Machine Intelligent Diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    19. Tang, Ting & Yuan, Huimei, 2022. "A hybrid approach based on decomposition algorithm and neural network for remaining useful life prediction of lithium-ion battery," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    20. Feiyue Deng & Yan Bi & Yongqiang Liu & Shaopu Yang, 2021. "Deep-Learning-Based Remaining Useful Life Prediction Based on a Multi-Scale Dilated Convolution Network," Mathematics, MDPI, vol. 9(23), pages 1-17, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:251:y:2024:i:c:s0951832024004496. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.