IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v253y2025ics0951832024006069.html
   My bibliography  Save this article

Contrastive domain-invariant generalization for remaining useful life prediction under diverse conditions and fault modes

Author

Listed:
  • Xiao, Xiaoqi
  • Zhang, Jianguo
  • Xu, Dan

Abstract

As industrial equipment becomes increasingly complex, necessitating operation under varied conditions and often exhibiting diverse failure modes, traditional deep learning models built on data from the original environment become inapplicable. Moreover, in actual industrial scenarios, the generalization capability of Domain Adaptation and classic Domain Generalization methods is severely impacted when there is a lack of multiple source domain and target domain data, due to the cost or feasibility constraints associated with collecting extensive monitoring data. In this paper, a single domain Contrastive Domain-Invariant Generalization (CDIG) method for estimating the remaining useful life under different conditions and fault modes is proposed. This method first defines homologous signals as the foundational data. Subsequently, it learns domain-invariant features by encouraging two feature extraction processes to extract latent features of homologous signals as similarly as possible. Additionally, multiple condition-based attention, pooling, and a novel equalization loss function are utilized to regulate the generation of domain-invariant features. Ultimately, the RUL predictor is trained by source domain data, operational conditions, and temporal information to facilitate its applicability across diverse domains. Case studies demonstrate that CDIG achieves satisfactory predictive results under unseen conditions, highlighting the potential of the proposed method as an effective predictive tool.

Suggested Citation

  • Xiao, Xiaoqi & Zhang, Jianguo & Xu, Dan, 2025. "Contrastive domain-invariant generalization for remaining useful life prediction under diverse conditions and fault modes," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
  • Handle: RePEc:eee:reensy:v:253:y:2025:i:c:s0951832024006069
    DOI: 10.1016/j.ress.2024.110534
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832024006069
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2024.110534?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:253:y:2025:i:c:s0951832024006069. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.