IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v253y2025ics0951832024005143.html
   My bibliography  Save this article

Dual-drive RUL prediction of gear transmission systems based on dynamic model and unsupervised domain adaption under zero sample

Author

Listed:
  • Han, Yaoyao
  • Ding, Xiaoxi
  • Gu, Fengshou
  • Chen, Xiaohui
  • Xu, Minmin

Abstract

Gear transmission systems are key components in rotating machinery, and its remaining useful life (RUL) prediction can provide adequate leading time for well-timed maintenance. Existing RUL prediction models usually rely on sufficient training data. However, the acquisition of full life cycle dataset of gear transmission system is difficult or impossible. To solve the problem on the difficult startup and poor generalization of prediction model under zero environment, a dual-drive prediction method based on dynamic model of gear transmission system and unsupervised domain adaptation is proposed in this paper. Firstly, a dynamic model of gear transmission system and growth mechanism of local defect is established to generate full-life cycle simulation data. Then, the multi-scale modulation features are extracted based on simulated and measured data. Furthermore, multi-scale temporal convolution operations are introduced into dual-channel unsupervised domain adaptation model. Besides, a compound principle of reverse truncation and forward expansion principle is investigated to determine the first prediction time. Finally, the validity of the proposed model is verified by two kinds of gearbox data. Ablation experiments are carried out to evaluate the contribution of each module in proposed model. In addition, the effectiveness and generalization ability of proposed model are verified when compared with other advanced transfer learning methods.

Suggested Citation

  • Han, Yaoyao & Ding, Xiaoxi & Gu, Fengshou & Chen, Xiaohui & Xu, Minmin, 2025. "Dual-drive RUL prediction of gear transmission systems based on dynamic model and unsupervised domain adaption under zero sample," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
  • Handle: RePEc:eee:reensy:v:253:y:2025:i:c:s0951832024005143
    DOI: 10.1016/j.ress.2024.110442
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832024005143
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2024.110442?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Miao, Mengqi & Yu, Jianbo & Zhao, Zhihong, 2022. "A sparse domain adaption network for remaining useful life prediction of rolling bearings under different working conditions," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    2. Zhuang, Jichao & Jia, Minping & Ding, Yifei & Ding, Peng, 2021. "Temporal convolution-based transferable cross-domain adaptation approach for remaining useful life estimation under variable failure behaviors," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    3. Fu, Song & Zhang, Yongjian & Lin, Lin & Zhao, Minghang & Zhong, Shi-sheng, 2021. "Deep residual LSTM with domain-invariance for remaining useful life prediction across domains," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    4. Cheng, Han & Kong, Xianguang & Wang, Qibin & Ma, Hongbo & Yang, Shengkang, 2022. "The two-stage RUL prediction across operation conditions using deep transfer learning and insufficient degradation data," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    5. Cheng, Han & Kong, Xianguang & Wang, Qibin & Ma, Hongbo & Yang, Shengkang & Xu, Kun, 2023. "Remaining useful life prediction combined dynamic model with transfer learning under insufficient degradation data," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    6. Zhang, Jiusi & Li, Xiang & Tian, Jilun & Jiang, Yuchen & Luo, Hao & Yin, Shen, 2023. "A variational local weighted deep sub-domain adaptation network for remaining useful life prediction facing cross-domain condition," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    7. Zio, Enrico, 2022. "Prognostics and Health Management (PHM): Where are we and where do we (need to) go in theory and practice," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    8. Chen, Dingliang & Cai, Wei & Yu, Hangjun & Wu, Fei & Qin, Yi, 2023. "A novel transfer gear life prediction method by the cross-condition health indicator and nested hierarchical binary-valued network," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    9. Han Cheng & Xianguang Kong & Qibin Wang & Hongbo Ma & Shengkang Yang & Gaige Chen, 2023. "Deep transfer learning based on dynamic domain adaptation for remaining useful life prediction under different working conditions," Journal of Intelligent Manufacturing, Springer, vol. 34(2), pages 587-613, February.
    10. He, Xinxin & Wang, Zhijian & Li, Yanfeng & Khazhina, Svetlana & Du, Wenhua & Wang, Junyuan & Wang, Wenzhao, 2022. "Joint decision-making of parallel machine scheduling restricted in job-machine release time and preventive maintenance with remaining useful life constraints," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    11. Dong, Shaojiang & Xiao, Jiafeng & Hu, Xiaolin & Fang, Nengwei & Liu, Lanhui & Yao, Jinbao, 2023. "Deep transfer learning based on Bi-LSTM and attention for remaining useful life prediction of rolling bearing," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    12. Zuo, Tao & Zhang, Kai & Zheng, Qing & Li, Xianxin & Li, Zhixuan & Ding, Guofu & Zhao, Minghang, 2023. "A hybrid attention-based multi-wavelet coefficient fusion method in RUL prognosis of rolling bearings," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    13. Li, Xiang & Zhang, Wei & Ding, Qian, 2019. "Deep learning-based remaining useful life estimation of bearings using multi-scale feature extraction," Reliability Engineering and System Safety, Elsevier, vol. 182(C), pages 208-218.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yan, Jianhai & Ye, Zhi-Sheng & He, Shuguang & He, Zhen, 2024. "A feature disentanglement and unsupervised domain adaptation of remaining useful life prediction for sensor-equipped machines," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    2. Xiong, Jiawei & Zhou, Jian & Ma, Yizhong & Zhang, Fengxia & Lin, Chenglong, 2023. "Adaptive deep learning-based remaining useful life prediction framework for systems with multiple failure patterns," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    3. Yang, Jing & Wang, Xiaomin, 2024. "Meta-learning with deep flow kernel network for few shot cross-domain remaining useful life prediction," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    4. Liu, Yang & Zhou, Guangda & Zhao, Shujian & Li, Liang & Xie, Wenhua & Su, Bengan & Li, Yongwei & Zhao, Zhen, 2025. "A novel two-stage method via adversarial strategy for remaining useful life prediction of bearings under variable conditions," Reliability Engineering and System Safety, Elsevier, vol. 254(PA).
    5. Wang, Wei & Song, Honghao & Si, Shubin & Lu, Wenhao & Cai, Zhiqiang, 2024. "Data augmentation based on diffusion probabilistic model for remaining useful life estimation of aero-engines," Reliability Engineering and System Safety, Elsevier, vol. 252(C).
    6. Xu, Yuhui & Xia, Tangbin & Jiang, Yimin & Wang, Yu & Wang, Dong & Pan, Ershun & Xi, Lifeng, 2024. "A temporal partial domain adaptation network for transferable prognostics across working conditions with insufficient data," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
    7. Gao, Pengjie & Wang, Junliang & Shi, Ziqi & Ming, Weiwei & Chen, Ming, 2024. "Long-term temporal attention neural network with adaptive stage division for remaining useful life prediction of rolling bearings," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    8. Han, Yan & Hu, Ailin & Huang, Qingqing & Zhang, Yan & Lin, Zhichao & Ma, Jinghua, 2025. "Sinkhorn divergence-based contrast domain adaptation for remaining useful life prediction of rolling bearings under multiple operating conditions," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
    9. Yang, Qichao & Tang, Baoping & Deng, Lei & Zhang, Xiaolong & Wu, Jinzhou, 2025. "A hybrid dual-frequency-informed spider net for RUL prognosis with adaptive IDP detection and outlier correction," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
    10. Zhang, Zhiyao & Chen, Xiaohui & Zio, Enrico & Li, Longxiao, 2023. "Multi-task learning boosted predictions of the remaining useful life of aero-engines under scenarios of working-condition shift," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    11. Ding, Peng & Zhao, Xiaoli & Shao, Haidong & Jia, Minping, 2023. "Machinery cross domain degradation prognostics considering compound domain shifts," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    12. Zhou, Haoxuan & Wang, Bingsen & Zio, Enrico & Wen, Guangrui & Liu, Zimin & Su, Yu & Chen, Xuefeng, 2023. "Hybrid system response model for condition monitoring of bearings under time-varying operating conditions," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    13. Yi Lyu & Qichen Zhang & Zhenfei Wen & Aiguo Chen, 2022. "Remaining Useful Life Prediction Based on Multi-Representation Domain Adaptation," Mathematics, MDPI, vol. 10(24), pages 1-18, December.
    14. Wang, Chu & Dou, Manfeng & Li, Zhongliang & Outbib, Rachid & Zhao, Dongdong & Zuo, Jian & Wang, Yuanlin & Liang, Bin & Wang, Peng, 2023. "Data-driven prognostics based on time-frequency analysis and symbolic recurrent neural network for fuel cells under dynamic load," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    15. Yan, Jianhai & He, Zhen & He, Shuguang, 2023. "Multitask learning of health state assessment and remaining useful life prediction for sensor-equipped machines," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    16. Fan, Linchuan & Chai, Yi & Chen, Xiaolong, 2022. "Trend attention fully convolutional network for remaining useful life estimation," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    17. Kim, Sunghyun & Seo, Yun-Ho & Park, Junhong, 2024. "Transformer-based novel framework for remaining useful life prediction of lubricant in operational rolling bearings," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    18. Hao, Zhaojun & Di Maio, Francesco & Zio, Enrico, 2023. "A sequential decision problem formulation and deep reinforcement learning solution of the optimization of O&M of cyber-physical energy systems (CPESs) for reliable and safe power production and supply," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    19. Nejjar, Ismail & Geissmann, Fabian & Zhao, Mengjie & Taal, Cees & Fink, Olga, 2024. "Domain adaptation via alignment of operation profile for Remaining Useful Lifetime prediction," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    20. Kamariotis, Antonios & Tatsis, Konstantinos & Chatzi, Eleni & Goebel, Kai & Straub, Daniel, 2024. "A metric for assessing and optimizing data-driven prognostic algorithms for predictive maintenance," Reliability Engineering and System Safety, Elsevier, vol. 242(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:253:y:2025:i:c:s0951832024005143. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.