IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v249y2024ics0951832024002837.html
   My bibliography  Save this article

Contrastive BiLSTM-enabled Health Representation Learning for Remaining Useful Life Prediction

Author

Listed:
  • Zhu, Qixiang
  • Zhou, Zheng
  • Li, Yasong
  • Yan, Ruqiang

Abstract

Remaining useful life (RUL) prediction is of vital significance in prognostics health management tasks. Due to powerful learning capabilities, deep learning methods, particularly long short-term memory (LSTM) have been widely applied in RUL prediction. However, many existing deep learning approaches overlook the inherent ordered relationship between samples in the direct mapping from sliced data to RUL pattern. To capture the faithful and ordered health representation of a given system, a Contrastive Bidirectional LSTM-enabled Health Representation Learning (CBHRL) framework is proposed. Firstly, the supervised contrastive regression loss (SupCR) is implemented to extract continuous health representation. The SupCR is designed to rank the similarity among health representations from different samples, prompting them highly correlated with linear RUL label. Among the process of contrastive learning, the series odd-even decomposition (SOED) method is devised to construct multi-view degradation data, which improves generalization ability. Finally, since the health representation is constructed on basis of similarity, a new similarity prediction method is proposed as the complement of regression prediction method. Experimental results show the health representations extracted by CBHRL achieve improved ratio ranging from a minimum of 17.19% to a maximum of 291.30% in monotonicity, smoothness and trendability.

Suggested Citation

  • Zhu, Qixiang & Zhou, Zheng & Li, Yasong & Yan, Ruqiang, 2024. "Contrastive BiLSTM-enabled Health Representation Learning for Remaining Useful Life Prediction," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
  • Handle: RePEc:eee:reensy:v:249:y:2024:i:c:s0951832024002837
    DOI: 10.1016/j.ress.2024.110210
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832024002837
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2024.110210?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:249:y:2024:i:c:s0951832024002837. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.